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Abstract 

This study introduces a novel pairs trading strategy based on copulas for cointegrated 
pairs of cryptocurrencies. To identify the most suitable pairs and generate trading 
signals formulated from a reference asset for analyzing the mispricing index, the study 
employs linear and nonlinear cointegration tests, a correlation coefficient measure, 
and fits different copula families, respectively. The strategy’s performance is then evalu-
ated by conducting back-testing for various triggers of opening positions, assessing its 
returns and risks. The findings indicate that the proposed method outperforms previ-
ously examined trading strategies of pairs based on cointegration or copulas in terms 
of profitability and risk-adjusted returns.

Keywords:  Statistical arbitrage, Pairs trading, Cointegration, Copulas, Cryptocurrency 
market

Introduction
Pairs trading is a well-known algorithmic trading strategy that capitalizes on temporary 
abnormal relationships among two or multiple assets whose historical prices tend to 
shift together. When this relationship begins to exhibit abnormal behavior, it triggers the 
opening of a trading position. The position closes as soon as the assets return to their 
normal behavior (Vidyamurthy 2004). According to Krauss (2017), pairs trading is char-
acterized by a formation and trading period. During the formation period, the objective 
is to identify pairs of assets that exhibit similar price movements.

This is commonly achieved through co-movement criteria, which can be measured 
using various methods. For example, the distance approach, as described by Gatev et al. 
(2006), Perlin (2009), Do and Faff (2010), and Do and Faff (2012), uses distance metrics 
such as the minimum sum of squared distances of normalized asset prices. Statistical 
relationships, such as cointegration rules (the cointegration approach) which was intro-
duced by Vidyamurthy (2004), Rad et al. (2016), Clegg and Krauss (2018), Fil and Kris-
toufek (2020), and Tadi and Kortchemski (2021) can also be used.

Furthermore, the parameters of the trading period are estimated during the forma-
tion period. During the trading timeframe, irregularities in pairs’ price movement aim to 
benefit from statistical arbitrage opportunities and create signals to open long or short 
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positions. Advanced strategies can leverage various mathematical tools to optimize the 
efficacy of their results. These tools encompass stochastic processes as examined in 
works by Elliott et  al. (2005), Bertram (2010), and Bogomolov (2013); stochastic con-
trol techniques as seen in the works of Jurek and Yang (2007), Mudchanatongsuk et al. 
(2008), Tourin and Yan (2013), and Lintilhac and Tourin (2017); copula-based meth-
ods as explored in the studies by Liew and Yuan (2013), Rad et al. (2016), Krauss and 
Stübinger (2017), and Silva et al. (2023); and machine learning or deep learning methods 
as demonstrated in the works of Sarmento and Horta (2020), Brim (2020), and Chang 
(2021).

This study aims to implement a pairs trading strategy by employing a reference asset-
based copula method for cointegrated cryptocurrency pairs.

Individual investors and investment companies place value on statistical arbitrage 
strategies, such as pairs trading in the cryptocurrency market, making this a valid area 
of research. We specifically focus on trading strategies that can yield consistent returns. 
Pairs trading can be profitable in the decentralized cryptocurrency market, offering 
two potential arbitrage opportunities: exchange-to-exchange and statistical arbitrage. 
Borri and Shakhnov (2022) offer a novel risk-based explanation for the price differences 
observed across cryptocurrency exchanges. To understand these discrepancies, they 
highlight significant factors such as transaction costs, market liquidity, and investor sen-
timent. Nevertheless, implementing exchange-to-exchange arbitrage can be risky and 
pose numerous challenges. By contrast, statistical arbitrage opportunities present simi-
lar profit potential but with lower risk (Pritchard 2018). The cryptocurrency market is 
noted for its volatility, which can reduce market efficiency and potentially provide arbi-
trage opportunities for traders, as highlighted by Al-Yahyaee (2020). Therefore, investors 
are driven to explore innovative trading strategies. Such algorithmic trading strategies 
can offer a more methodical and organized way to navigate the cryptocurrency market, 
leveraging market volatility to potentially enhance profitability. Moreover, in the crypto-
currency ecosystem, delving into algorithmic trading strategies is crucial for establishing 
a framework with best practices for traders and investors. This, in turn, contributes to 
the development and maturation of the market, providing the necessary stability for the 
sustainable growth of the cryptocurrency ecosystem.

In the subsequent sections, this study is structured as follows: Section “Literature 
review” reviews the literature, focusing specifically on existing pairs trading strategies 
and copula-based techniques to identify limitations in previously introduced method-
ologies. Section “Cryptocurrency exchange and data source” provides an overview of 
the cryptocurrency exchanges and data sources employed in this study. Section “Theo-
retical framework” details the theoretical framework, including discussions on unit-root 
tests, the concept of copulas, families of copulas, and methods for copula estimation. 
Section “Implementation methodology” describes the implementation methodology of 
our hybrid approach, which combines copula-based and cointegration-based strategies 
for pair trading with cryptocurrency coins. This involves selecting linear and non-lin-
ear cointegrated coins, establishing trading rules using copula conditional probabilities, 
and conducting thorough back-testing using historical cryptocurrency price data. Sec-
tion “Key assumptions and limitations” presents the key assumptions and limitations 
of the proposed approach. Section “Empirical results ” discusses the empirical results 
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and evaluates the strategy’s performance using diverse metrics such as profitability, risk-
adjusted return, and maximum drawdown. Section “Conclusion” concludes the findings, 
emphasizing the importance of selecting an appropriate entry threshold in pairs trading 
and demonstrating its impact on both volatility and returns. This study also contributes 
to the literature by comparing the performance of the proposed copula method with that 
of conventional methods in this domain.

Literature review
Multiple studies have used various concepts, such as the distance approach, cointe-
gration analysis, or the concept of copulas, in pairs trading strategies. The distance 
approach involves calculating the historical price spread or the price difference between 
two related assets and monitoring this spread over time. The spread is usually calculated 
as the difference between the prices of two assets, either as a raw spread or a normal-
ized spread, such as the z-score or percent difference. For example, Gatev et al. (2006) 
defined the normalized spread Sijt  between assets i and j at time t as:

where Pi
t is the price of asset i at time t, rit is the t-period return on asset i at time t, and 

crit is the cumulative total return on asset i until time t ( cri0 = 1 ). Spread sum of squared 
distance (SSD) is performed using the following equation:

Pairs are chosen for the trading period based on the ascending order of SSDi,j during the 
formation stage. The initial pairs at the top of the list are selected, and basic nonpara-
metric threshold rules are employed to generate trading rules. An alternative method 
was used by Chen (2019), who identified the most suitable pairs for a trading period 
using the Pearson correlation of asset returns instead of finding the minimum sum of 
the squared distance. Krauss (2017) found that to maximize the profit of the distance 
approach strategy, the spread of each selected pair must have high volatility, indicating 
the potential divergence of the two assets. The pair’s spread should also have a mean-
reverting property. The key advantage of this approach is its simplicity and transparency, 
making it suitable for large-scale empirical applications.

Huck (2015) found that the cointegration approach outperformed the distance 
approach in selecting effective pairs. The cointegration approach aims to identify a 
long-term equilibrium between nonstationary time series (e.g., asset prices) that move 
together. This equilibrium can be linear or nonlinear. Engle and Granger (1987) intro-
duced the first cointegration test, which is based on linear regression and the unit-root 
test of residuals in the equilibrium. Typically, the augmented Dickey-Fuller (ADF) test is 
used for the unit-root test. Other improvements of the Engle-Granger (EG) cointegration 
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test were introduced by Phillips and Ouliaris (1990) and Johansen (1991). Highly volatile 
markets such as cryptocurrencies usually exhibit nonlinear features. Therefore, we can 
extend the Engle-Granger cointegration test by adjusting the error correction model and 
applying nonlinear unit root tests to increase the reliability of the study. These exten-
sions were studied by Enders and Siklos (2001), Hansen and Seo (2002), and Kapetanios 
et al. (2006).

Several studies have also explored the application of pairs trading in the cryptocur-
rency market, such as Lintilhac and Tourin (2017), van den Broek and Sharif (2018), 
Pritchard (2018), Kakushadze and Willie (2019), Leung and Nguyen (2019), Tadi and 
Kortchemski (2021), and Fil and Kristoufek (2020). Furthermore, Fang (2022) con-
ducted an extensive review of cryptocurrency trading research, covering diverse 
aspects such as cryptocurrency trading systems, market conditions (bubbles and 
extreme events), volatility and return prediction, portfolio construction, and technical 
trading.

In addition to the commonly used methods discussed above, more advanced con-
cepts, such as copulas, can be applied to enhance the empirical results of the strategy. 
Compared to correlation or linear cointegration-based methods, the copula approach 
provides more valuable information regarding the shape and characteristics of pairs’ 
dependency (Ferreira 2008). Xie and Wu (2013) demonstrated that the commonly used 
distance and cointegration methods can be generalized as special cases of the copula 
method under certain conditions. This means that the dependency structure of assets in 
the copula approach is more robust and accurate.

Moreover, Liew and Yuan (2013) conducted a comparative study of a copula-based 
pairs-trading strategy with other conventional approaches such as distance and cointe-
gration approaches. They found that the copula approach for pairs trading shows bet-
ter empirical results than other approaches. It also presents more trading possibilities 
with higher confidence in practice and does not entail any rigid assumptions, such as 
the linear association between asset returns in traditional approaches. Hence, the copula 
approach provides closer estimates and predictions of the reality. According to Stander 
et al. (2013), the copula approach can significantly demonstrate the dependency of pairs 
because it can capture the asymmetry and heavy-tailed characteristics of asset returns to 
model marginal distribution functions instead of modeling them by Gaussian distribu-
tion. Furthermore, their empirical analyses reveal that there are more trading opportu-
nities when the market is highly volatile and that the profitability of a strategy strongly 
depends on the liquidity of the market.

According to Xie and Liew (2016), the copula method outperforms the distance 
approach in describing the dependency relationship between assets and identifying 
more statistical arbitrage opportunities that generate greater profits. They also recom-
mended utilizing the copula approach for high-frequency pairs trading. Rad et al. (2016) 
compared the performance of the copula approach with that of traditional methods 
using daily US stocks. They found that while the profitability of the copula method could 
be weaker, it is more reliable in capturing arbitrage opportunities in the US stock mar-
ket. They determined that the Student-t copula is more appropriate for modeling the 
dependence structure of pairs in the US stock market than other copulas.
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The performance of a pair-trading strategy based on a weighted combination of cop-
ulas was evaluated by Silva et  al. (2023) against a distance methodology using a vast 
dataset of S&P500 stocks covering 25 years. This study examines the effects of financial 
factors on profitability. The mixed copula approach yields better results than the dis-
tance method, with higher alphas for fully invested capital and overall superior perfor-
mance. The approach was notably effective under committed capital during both crisis 
and non-crisis periods and was fully invested during non-crisis periods.

According to Krauss and Stübinger (2017), the copula approach can be divided into 
two substreams:

Return-based copula method In the return-based copula method, the log-returns of 
two assets are calculated and their marginal distributions estimated. An appropriate 
copula is then chosen to represent the dependency relationship between the two assets. 
To generate trading signals, a mispricing index, which indicates the degree of abnormal 
relationships among assets, is defined. Unlike the distance and cointegration methods, 
which use a spread-based mispricing definition, the copula method defines mispricing 
based on the copula’s conditional probability distribution of the corresponding assets’ 
log-returns. The conditional distribution of the copulas can be obtained by taking the 
partial derivative of the copula function, as shown below1:

where C(u1,u2) is the copula distribution function; h1|2 and h2|1 are the conditional cop-
ula distribution functions; and U1 and U2 are the transformed uniform variables of the 
log returns. The values of h1|2 and h2|1 are between 0 and 1. As their values differ from 
0.5, we consider this a deviation from the expected relationship between the two assets. 
Ferreira (2008), Liew and Yuan (2013), Stander et  al. (2013), and Haddad et  al. (2023) 
also deployed their strategy in this way.

However, a significant limitation of this return-based approach is its dependence on 
the returns of the previous period to generate the entry and exit signals. This method 
potentially overlooks long-term trends and dependencies that extend beyond immedi-
ate past returns, leading to suboptimal trading signals. Such signals may not capture the 
substantial market changes that affect the overall effectiveness and profitability of the 
strategy.

Level-based copula method To address the limitation of the return-based method, a 
new approach (hereafter referred to as the level-based method) was proposed by Xie 
and Wu (2013). They defined a new mispricing index by aggregating the surplus value of 
the conditional probability in Eq. (4) from 0.5 across multiple periods to determine the 
extent to which assets are out of balance. These cumulative mispricing indices (CMI) are 
defined as

(4)
h1|2 := h(u1|u2) = P(U1 ≤ u1|U2 = u2) =

∂C(u1,u2)

∂u2

h2|1 := h(u2|u1) = P(U2 ≤ u2|U1 = u1) =
∂C(u1,u2)

∂u1

1  For more details, see Sect. “Copula concept”.
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The studies, which investigate the level-based copula method, were conducted by Xie 
and Liew (2016), Rad et al. (2016), Krauss and Stübinger (2017), and Silva et al. (2023).

In practice, the application of cumulative mispricing indices (CMIs)-as detailed in 
Eq.  (5)-within the level-based copula method presents a significant challenge. These 
indices are expected to exhibit mean-reverting behavior, a key assumption that under-
pins the profitability of this trading strategy. However, CMIs often do not consistently 
demonstrate such behavior. The lack of mean reversion in the CMI can adversely affect 
the profitability of the strategy and could lead to prolonged periods of unprofitable 
trades if the expected mean reversion does not materialize.

Furthermore, both return- and level-based copula methods exhibit notable limitations, 
particularly when applied to datasets with high granularity concerning low-liquidity 
assets. Given that these methods fundamentally rely on asset returns to model depend-
encies, they can encounter issues with finer data resolution, where frequent zero returns 
are common. This often results in a violation of the continuity assumption required for 
the random variables used in copula modeling.

To address these limitations, this study introduces a novel methodology that utilizes 
stationary spread processes instead of traditional log returns. This approach aims to pro-
vide a more reliable criterion for trading decisions, thereby improving the robustness 
and applicability of copula-based models. Furthermore, this new methodology addresses 
the challenge of high-frequency data, particularly in less-liquid assets, by introducing a 
highly liquid cryptocurrency, such as Bitcoin, as a reference asset in the spread process 
formula.2

Cryptocurrency exchange and data source
The cryptocurrency market facilitates decentralized trading of cryptocurrencies across 
various exchanges. Binance, established in 2017, is the largest cryptocurrency exchange 
worldwide in terms of daily trading volume in both spot and derivative markets. In this 
market, cryptocurrencies are typically quoted in pairs, where the value of one crypto-
currency is expressed in terms of another cryptocurrency or a fiat currency such as the 
US dollar. For example, the notation BTCUSD indicates how many US dollars one Bit-
coin is worth.

Binance provides three types of derivative contracts: futures, options, and Binance lev-
eraged tokens (BLVT). Futures contracts are classified into two main categories: COIN-
margined contracts and USD s©-margined contracts. COIN-margined contracts are 
inverse futures quoted in US dollars but denominated in an underlying cryptocurrency 
(e.g., Bitcoin). They include traditional quarterly and perpetual futures, also known 
as perpetual swaps, that never expire or settle. Since they lack settlement prices, their 
prices can deviate significantly from their spot contract prices. Binance uses funding fees 
to address this issue on both the long and short sides.

(5)
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2  For more details, see Sects. “Implementation methodology” and “Key assumptions and limitations”.
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Meanwhile, USD s©-margined contracts are similar to COIN-margined futures and 
have perpetual or quarterly expiration dates. However, they are quoted, denominated, 
and settled in stablecoins such as Tether (USDT) and Binance USD (BUSD), which are 
pegged to the US dollar value. For this study, all nominated cryptocurrency coins are 
USDT-margined futures (Binance Crypto Derivatives 2022). We choose USDT because 
its pairs generally exhibit higher liquidity than other stablecoins and many cryptocurren-
cies, making it ideal for implementing and evaluating our trading strategies effectively 
within the dynamic cryptocurrency market. Table 1 shows the Binance USDT-margined 
futures contracts used in this study. Notably, this subset of coins was specifically selected 
based on their earlier issuance and a longer history of market activity.

The minimum order price, also known as minimum price increment, is the smallest 
possible change in the price of a contract in exchange. This value is specific to each asset 
and can be adjusted over time. Assets with smaller increments have narrower bid or ask 
spreads. When limit orders are not entirely disclosed, traders tend to order contracts 
with smaller quote sizes to avoid slippage (Harris 1997).

To calculate profit and loss, all coins are valued in Tether (USDT), a stablecoin. 
Using the Binance application programming interface (API), we collected both his-
torical hourly and 5-min closed prices for 20 cryptocurrency coins from 01/01/2021 to 
19/01/2023.

Table 1  Binance USDT-Margined Futures Contracts Used in the Research

Symbol Underlying crypto Min. order price (USDT) Max. Leverage

BTCUSDT Bitcoin 1× 10−2 125x

ETHUSDT Ethereum 1× 10−2 100x

BCHUSDT Bitcoin Cash 1× 10−2 75x

XRPUSDT Ripple 1× 10−4 75x

EOSUSDT EOS.IO 1× 10−3 75x

LTCUSDT Litecoin 1× 10−2 75x

TRXUSDT TRON 1× 10−5 50x

ETCUSDT Ethereum Classic 1× 10−3 75x

LINKUSDT Chainlink 1× 10−3 75x

XLMUSDT Stellar 1× 10−5 50x

ADAUSDT Cardano 1× 10−5 75x

XMRUSDT Monero 1× 10−2 50x

DASHUSDT Dash 1× 10−2 50x

ZECUSDT Zcash 1× 10−2 50x

XTZUSDT Tezos 1× 10−3 50x

ATOMUSDT Cosmos 1× 10−3 25x

BNBUSDT Binance Coin 1× 10−3 75x

ONTUSDT Ontology 1× 10−4 50x

IOTAUSDT IOTA 1× 10−4 25x

BATUSDT Basic Attention Token 1× 10−4 50x
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Theoretical framework
Unit‑root test

The cointegration property can be used to identify the most appropriate pair from mul-
tiple combinations of coins. Both linear and nonlinear cointegration tests can be utilized 
for evaluation. Initially, the pair spread value without an intercept was defined as follows:

Suppose that P1
t  and P2

t  are nonstationary time series. We use unit-root tests to estab-
lish whether the spread St is also a non-stationary process. The augmented Dickey-Fuller 
(ADF) unit-root test, as described by Dickey and Fuller (1979), uses a test equation 
applied to the demeaned-spread process St in the following form:

where β is the coefficient of the lagged level of the series, γi are the coefficient of the 
lagged differences, ǫt is the error term, and p is the number of lags in the test. The null 
hypothesis of the ADF test is that the series has a unit root, i.e., β = 0 . If the test statistic 
exceeds a critical value at a given significance level, the null hypothesis is rejected, indi-
cating that the series is stationary and does not have a unit root. Conversely, if the test 
statistic is below the critical value, the null hypothesis cannot be rejected, implying that 
the series has a unit root and is non-stationary.

Traditional unit-root tests, such as the ADF test, assume that the data-generating pro-
cess is linear. However, non-linear unit-root tests are designed to account for non-line-
arities in time series data and provide more accurate assessments of unit roots. There are 
several non-linear unit-root tests available in the literature, each with its own assump-
tions, methodologies, and advantages. Examples include the Teräsvirta (1994) test, the 
Zivot and Andrews (2002) test, the Kapetanios et  al. (2003) test, and the Kapetanios 
(2005) test. These tests often involve estimating non-linear models, such as threshold 
auto-regressive (TAR), smooth transition auto-regressive (STAR), or other non-linear 
models, and computing test statistics to compare estimated model parameters with criti-
cal values.

The general self-exciting threshold auto-regressive (SETAR) model with n regimes 
applied to the demeaned spread process St is in the following form:

where d denotes the transition’s delay, cj represents the j-th threshold, and ǫt represents 
the error term. Kapetanios et  al. (2003) proposed a test equation where the indicator 
function is replaced by an exponential smooth transition function in the form:

(6)St = P1
t − βP2

t

(7)�St = βSt−1 +

p−1∑

i=1

γi�St−i + ǫt ,

(8)St =

p�

i=1



φi11{St−d≤c1} +

n−1�

j=1

φij1{cj<St−d≤cj+1} + φin1{St−d>cn}



St−i + ǫt ,
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When c is set to zero and p to one, using the Taylor approximation, Eq. (9) can be illus-
trated as:

where δ = γ1θ and ǫ′t = f (ǫt) . The null hypothesis assumes that δ is equal to zero, 
whereas the alternative hypothesis posits that δ is less than zero. Note that the asymp-
totic standard normal distribution of the t-statistic for δ = 0 against δ < 0 is not appli-
cable. However, its asymptotic critical values have been determined through stochastic 
simulations and are documented by Kapetanios et al. (2003).

Copula concept

Consider a continuous random variable X with a probability distribution func-
tion defined by FX (x) := P(X ≤ x) . If FX is strictly increasing, then F−1

X  is defined by 
F−1
X (u) = x ⇔ FX (x) = u . However, if FX is constant on some interval, then the inverse 

function is not well defined by F−1
X (u) = x . To avoid this problem, we can define F−1

X (u) 
for 0 < u < 1 by the generalized inverse function such that

Now, in the same way, we define another continuous random variable Y with distribu-
tion function FY  and generalized inverse function F−1

Y  similar to Eq. (11). Given two con-
tinuous random variables X and Y, with distribution functions FX and FY  , respectively, 
the joint distribution function FX ,Y  can be written as:

where the last equality follows from the fact that FX and FY  are both increasing. Then, 
we define random variables U and V such that U := FX (X) and V := FY (Y ) . According 
to the probability integral transformation theorem, the probability distribution functions 
FU and FV  of the random variables U and V, respectively, are uniformly distributed on 
[0, 1]. (See Casella and Berger (2021, p. 54–55) for the proof).

Definition  A two-dimensional copula C is a function that maps the unit square [0, 1]2 
into the unit interval [0, 1], satisfying the following requirements: 

1.	 C(0, v) = C(u, 0) = 0,  for 0 ≤ u, v ≤ 1.
2.	 C(u, 1) = u , and C(1, v) = v ,   for 0 ≤ u, v ≤ 1.
3.	 C(u1, v1)− C(u1, v2)− C(u2, v1)+ C(u2, v2) ≥ 0, For 1 ≥ u1 > u2 ≥ 0, and 1 ≥ v1 > v2 ≥ 0

We can define several copula functions; however, the three requirements above should 
be satisfied by C(u, v) to have a well-defined joint distribution function (Cherubini et al. 
2011).

(9)St = St−1 +

p∑

i=1

(
γ1i

(
1− e−θ(St−1−c)

2
)
St−i

)
+ ǫt

(10)�St = δ(St−1)
3 + ǫ′t

(11)F−1
X (u) = inf{x : FX (x) ≥ u},

(12)FX ,Y (x, y) = P(X ≤ x,Y ≤ y) = P(FX (X) ≤ FX (x), FY (Y ) ≤ FY (y))



Page 10 of 32Tadi and Witzany ﻿Financial Innovation           (2025) 11:40 

According to Sklar’s theorem, there is a copula function C that could connect the uni-
form random variables U and V to the joint distribution function FX ,Y  as follows

Hence, we can rewrite the joint distribution function of X and Y in terms of standard 
uniform random variables U and V such that

where u = FX (x) and v = FY (y) . Considering that FX ,Y (x, y) = C(u, v) , we can determine 
the copula density function c(u, v) by

Sklar’s theorem enables us to separate the modeling of the marginal distributions FX (x) 
and FY (y) from the dependence relation represented in C. We can characterize the con-
ditional distribution functions by utilizing copula functions. The conditional distribu-
tion of Y given X = x can be determined by computing the first partial derivative of the 
copula function, expressed as follows: FY |X (y) =

∂
∂uC(u, v) (Cherubini et al. 2011).

Copulas are invariant concerning strictly increasing transformations of the mar-
ginal distributions. For more details about the characterization of invariant copulas, 
see Klement et al. (2002). Additionally, we can increase the range of dependence cap-
tured by copulas by rotating them. The following equations show how to rotate a cop-
ula by 90, 180, and 270 degrees:

Families of copulas

There are several types of copulas. This study focuses on three popular families of 
copulas: elliptical, Archimedean, and extreme value. Each copula type is character-
ized by its properties, such as its dependence structure and tail behavior, and is often 
used in different areas of statistics and finance. We chose these families of copulas 
based on their widespread use and established utility in financial modeling, as evi-
denced by the existing literature. These copula families offer distinct advantages for 
capturing different dependence structures in financial data.

An elliptical copula is constructed from a multivariate elliptical distribution. The 
density function of any elliptical distribution fX is in the form

where kn ∈ R is the normalizing constant and depends on the dimension n, x is an 
n-dimensional random vector with mean vector µ ∈ R

n and a symmetric positive 

(13)FX ,Y (X ,Y ) = FX ,Y (F
−1
X (U), F−1

Y (V )) := C(U ,V ),

(14)FX ,Y (x, y) = FX ,Y (F
−1
X (u), F−1

Y (v)) := C(u, v) = C(FX (x), FY (y)),

(15)c(u, v) =
∂2C(u, v)

∂u ∂v
=

∂2FX ,Y (x, y)

∂FX (x) ∂FY (y)
=

∂2FX ,Y (x,y)
∂x ∂y

∂FX (x) ∂FY (y)
∂x ∂y

=
fX ,Y (x, y)

fX (x)fY (y)

(16)
C90(u1,u2) := C(1− u2,u1)

C180(u1,u2) := C(1− u1, 1− u2)

C270(u1,u2) := C(u2, 1− u1)

(17)fX (x;µ,�) = kn|�|−
1
2 g
((

x − µ)T�−1(x − µ
))

,
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definite matrix � ∈ R
n×n , and some function g(.) which is independent of the dimension 

n (Czado 2019). This study used the multivariate Gaussian and Student-t, the most pop-
ular elliptical distributions. For more details about elliptical copulas, see the appendix.

Archimedean copulas are based on a generator function and can model dependence 
with tail dependence that decreases logarithmically or exponentially. The generator 
function determines the shape of the copula and influences the degree of tail depend-
ence. According to Nelsen (2007), Archimedean copulas are defined as follows:

where φ : [0, 1] → [0,∞] is a continuous generator, strictly decreasing, and convex func-
tion such that φ(1) = 0 . In addition, φ[−1] : [0,∞] → [0, 1] is called the pseudo-inverse 
of φ function and is defined by

If φ(0) equals infinity, then the pseudo-inverse function φ[−1] is equivalent to the inverse 
function φ−1 . In this research, both one-parameter (such as the Gumbel, Clayton, Frank, 
and Joe copulas) and two-parameter Archimedean copulas (such as BB1, BB6, BB7, and 

(18)C(u1, . . . ,un) = φ[−1](φ(u1)+ · · · + φ(un))

(19)φ[−1](t) =

{
φ−1(t) , 0 ≤ t ≤ φ(0)
0 , φ(0) ≤ t ≤ ∞

Table 2  Pickands dependence function of some extreme-value copulas

Name Pickands function A(t) Parameters

Gumbel [
t
θ + (1− t)θ

]1/θ θ ≥ 1

Tawn Type 1
(1− α)t +

[
(α(1− t))θ + t

θ

]1/θ θ ≥ 1, 0 ≤ α ≤ 1

Tawn Type 2
(1− β)(1− t)

[
(1− t)θ + (βt)θ

]1/θ θ ≥ 1, 0 ≤ β ≤ 1

Table 3  Trading rules in terms S1 and S2

Trading rule Signals

If h1|2 < α1 and h2|1 > 1− α1 open long S1 and short S2

If h1|2 > 1− α1 and h2|1 < α1 open short S1 and long S2

If |h1|2 − 0.5| < α2 and |h2|1 − 0.5| < α2 close both positions

Table 4  Trading rules in terms P1 and P2

Trading rule Signals

If h1|2 < α1 and h2|1 > 1− α1 open long β2 × P
2 and short β1 × P

1

If h1|2 > 1− α1 and h2|1 < α1 open short β2 × P
2 and long β1 × P

1

If |h1|2 − 0.5| < α2 and |h2|1 − 0.5| < α2 close both positions
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BB8) are utilized. Table 10 in the appendix provides a list of the bivariate Archimedean 
copulas utilized in this study.

Extreme value copulas are used to model dependence with strong tail dependence, 
making them suitable for modeling extreme events. Suppose that Xi = (Xi1,Xi2)

T , and 
i ∈ {1, 2, · · · , n} are independent and identically distributed random vectors with joint 
distribution function F and marginal distributions F1 and F2 . According to Guden-
dorf and Segers (2010), we can define the bivariate vector of component-wise maxima 
Mn = (Mn1,Mn2)

T such that

Then, the bivariate copula Cn of Mn is obtained by

In Eq. (21), if CF exists such that

then the bivariate copula C in (22) is called an extreme-value copula. Bivariate extreme-
value copulas can be demonstrated in terms of a function A(t) in this form:

where the function A : [0, 1] → [1/2, 1] , which is called the Pickands dependence func-
tion, is convex and satisfies max(1− t, t) ≤ A(t) ≤ 1 for all t ∈ [0, 1] (Gudendorf and 
Segers 2010). Some Archimedean copulas, such as the Gumbel copula, can be expressed 
by the extreme-value family. These special copulas create a hybrid category, including 
both the Archimedean and the extreme-value copulas, and are called Archimax copulas. 
Table 2 shows extreme-value copulas used in this research. Note that Tawn copula has 
three parameters and its Pickands’ dependence function is in the form

where θ ≥ 1 and α,β ∈ [0, 1] . The simplified Tawn copula cases with β = 1 and α = 1 are 
respectively called Tawn Type 1 and Tawn Type 2 copula and have two parameters.

Copula estimation

When the marginal probability density of X1 and X2 and their corresponding copula 
density c(.) are given in their parametric with unknown parameters, we can estimate the 
parameter vector θ = (β ,α)T with the maximum likelihood estimation (MLE) method, 
where β =

(
β1,β2

)T represent the marginal parameters and α represents the copula 
parameters. The log-likelihood function for (X1,X2) , where Xi = (xi1, . . . , xin) , can be 
expressed as

(20)Mnj := max
i∈{1,2,··· ,n}

(
Xij

)
, j = 1, 2.

(21)Cn(u1,u2) = CF

(
u
1/n
1 ,u

1/n
2

)n
, (u1,u2) ∈ [0, 1]2.

(22)lim
n→∞

CF (u
1/n
1 ,u

1/n
2 )n = C(u1,u2), (u1,u2) ∈ [0, 1],

(23)C(u1,u2) = (u1u2)
A(ln(u2)/ ln(u1u2)), (u1,u2) ∈ (0, 1]2 \ {(1, 1)},

(24)A(t) = (1− β)+ (β − α)t +
[
(α(1− t))θ + (βt)θ

]1/θ
,
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and the maximum likelihood estimator of θ is

However, given that this approach is computationally expensive, an alternative method 
called the inference for the margins (IFM) two-step method can be used instead. This 
method is computationally easier to obtain compared to the full maximum likelihood 
estimation approach. First, we estimate the margins’ parameters by performing the esti-
mation of the univariate marginal distributions using the log-likelihood function, where 
the maximum likelihood estimator of β i is

Then, given the estimated marginal parameters, we transform data to the copula scale, 
develop the copula model, and estimate the copula parameters α as follows:

We can also employ a semiparametric approach known as canonical maximum likeli-
hood (CML) to estimate copula parameters without specifying the marginals. The 
empirical cumulative distribution function of Xi = (xi1, . . . , xin) is

Then, the copula parameters are estimated using maximum likelihood estimation as 
follows:

Implementation methodology
Two approaches have been used so far in Chapter 2 to calculate the mispricing index: 
one utilizes Eq.  (4), whereas the other employs Eq.  (5). Both approaches have certain 
limitations: the return-based method’s entry and exit signals are solely connected to the 
previous period’s return, while the level-based method does not inherently demonstrate 
mean-reverting behavior, potentially adversely affecting the overall profitability of the 
strategy. This research proposes a new method that addresses the limitations inherent in 
both of the previously discussed methods, as outlined below.

(25)l(θ) =

n∑

j=1

[
log c

(
F1(x1j;β1), F2(x2j;β2);α

)
+ log f1(x1j;β1)+ log f2(x2j;β2)

]
,

(26)θ̂ML = argmax
θ

l(θ).

(27)β̂ i = argmax
β i

n∑

j=1

[
log fi(xij;β i)

]
.

(28)α̂ML = argmax
α

n∑

j=1

[
log c

(
F1(x1j; β̂1), F2(x2j; β̂2);α

)]
.

(29)F̂ i
n(t) =

#{Xi ≤ x}

n+ 1
=

1

n+ 1

n∑

j=1

1{xij≤t}.

(30)α̂ML = argmax
α

n∑

j=1

[
log c

(
F̂1
n (x1j), F̂

2
n (x2j);α

)]
.
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Reference-asset-based copula method The proposed methodology deviates from 
conventional approaches by incorporating stationary spread processes instead of log-
returns. For each asset i, the spread process Sit is defined as:

where P Reference
t  represents the price of a specified reference asset at time t, while β̂ i is 

the estimated linear regression coefficient between the reference asset and the asset i. Si 
is a stationary process wherein the reference asset and asset i are cointegrated. Identify-
ing assets cointegrated with the reference asset facilitates the derivation of stationary 
spread processes. By utilizing these spread processes as our tradable assets, we can build 
copula models for each pair of stationary spreads. This approach provides signals for 
the mispricing index without the need to explicitly accumulate the index itself. Impor-
tantly, this signifies that the decision-making process for entering or exiting a trade is 
not exclusively dependent on the most recent market movement, as we have employed a 
stationary price process instead of relying on log-returns.

Within the pairs-trading strategy framework employed in this study, the spread pro-
cess is defined as a linear combination of BTCUSDT (as a reference coin) and other 
cryptocurrency coins. Bitcoin is chosen for its substantial influence on the overall cryp-
tocurrency market, often accounting for a significant portion of the total cryptocurrency 
market cap. Price movements play an essential role in shaping trends and sentiments in 
the cryptocurrency market. Furthermore, compared to newer or less established cryp-
tocurrencies, Bitcoin is often perceived as relatively more stable. These factors make 
BTCUSDT an ideal reference asset for our analysis. The spread process for each coin 
pair is then computed as follows:

This allows us to identify 19 pairs and select the optimal pairs during the formation 
period for trading in the subsequent trading period. To determine the optimal pairs, 
we use the linear Engle-Granger (EG) two-step method and the non-linear Kapetanios-
Shin-Snell (KSS) cointegration tests to identify cointegrated coins. However, because 
there may be multiple cointegrated pairs, we must add another criterion to rank them. 
To do this, we calculate Kendall’s Tau ( τ ), which is a measure of correlation for ranked 
data and defined as:

where

(31)Sit = P
Reference
t − β̂ iPi

t

(32)Sit = BTCUSDTt − β̂ iPi
t i = 1, 2, . . . , 19

(33)τ (Si, Sj) = τij =
Number of concordant pairs−Number of discordant pairs

Total number of pairs

Number of concordant pairs =

N−1∑

n=1

N∑

m=n+1

sgn(Si[n] − Si[m])sgn(S
j
[n] − S

j
[m]),

Number of discordant pairs =

N−1∑

n=1

N∑

m=n+1

sgn(Si[n] − Si[m])sgn(S
j
[m] − S

j
[n]),
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and total number of pairs = N (N − 1)/2 . Here, N is the number of data points; Si[n] and 
S
j
[n] are the rankings of the n-th data point in two different variables; and sgn(x) is the 

sign function, which is 1 if x > 0 , −1 if x < 0 , and 0 if x = 0.
After calculating τ of BTCUSDT with each of the 19 altcoins, we select the two altcoins 

that have the highest τ with BTCUSDT and create their corresponding pairs. During the 
course of one week, the chosen pairs are traded and can be substituted with different 
pairs at the start of each trading period. Instead of trading a pair of coins, we employ a 
pair of spreads where each of them contains BTCUSDT. In this case, a long position in 
one spread and a short position in the other implies that BTCUSDT will not be traded at 
all and only plays an intermediary role between two other coins.

Now, we estimate the probability distribution function of spread processes (margin-
als). We fit various distributions such as Gaussian, Student-t, and Cauchy to the data to 
identify the best-fitting distribution. By employing statistical methods or maximum like-
lihood estimation, we estimate the specific parameters associated with each distribution. 
To evaluate the goodness of fit, we calculate the Akaike information criterion (AIC) val-
ues for the candidate distributions, ultimately selecting the distribution with the lowest 
AIC value as the best-fitting option. Suppose that Fi is the fitted cumulative distribution 
function of the spread process Si.

The Probability Integral Transform is employed to convert the spreads to random 
variables U1 := F1(S1) and U2 := F2(S2) with a standard uniform distribution. The next 
step is to determine a fitting copula model for U1 and U2 . We select some potential cop-
ulas and estimate the corresponding parameters by the maximum likelihood method. 

Fig. 1  Confidence bands of Gumbel copula ( θ = 2 ) at α1 = 5% and α2 = 10%
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Finally, using the Akaike information criterion (AIC), we distinguish the most fitted cop-
ula model.

During the trading period, using the hourly realizations of random variables U1 and 
U2 , which are the transformed values of spread processes, we calculate the copula con-
ditional probabilities h1|2 and h2|1 defined in Eq.  (4) for the selected pairs of the week. 
When h1|2 is higher (lower) than 0.5, the first coin can be considered to be overvalued 
(undervalued) relative to the second one. Similarly, when h2|1 is higher (lower) than 
0.5, the second coin can be considered to be overvalued (undervalued) relative to the 
first one. Therefore, we can interpret mispricing as conditional probabilities in Eq.  (4) 
minus 0.5. We denote the trading thresholds as α1 and α2 . We study the optimal triggers 
via back-testing. The opening and closing signals are generated by the rules outlined in 
Tables 3 and 4.

Figure 1 illustrates the confidence bands in the trading rules for the Gumbel copula 
with a parameter value of θ = 2 under the conditions α1 = 5% and α2 = 10% . If the 
data point (u1t ,u2t) falls within the top green (down green) area, this suggests that S1 
is undervalued (overvalued) and S2 is overvalued (undervalued), which may indicate an 
opportunity to open a position. By contrast, if (u1t ,u2t) falls within the red area, it can 
signal the need to close the positions.

Key assumptions and limitations
The effective execution of our strategy relies on certain assumptions and acknowledges 
specific limitations. The key factors shaping our approach include:

•	 As we mentioned earlier, a pairs trading cycle comprises formation and trading peri-
ods. In this research, cycles of pairs trading are conducted within a month, with 
three weeks allocated for the formation step and the remaining week designated for 
the trading step.

•	 We carry out 104 cycles that move dynamically over time, with each cycle sharing 
three-quarters of its data with its previous or subsequent cycle. For more clarifica-
tion, see Fig. 2.

•	 If we fail to identify a minimum of two stationary spread processes within a specified 
formation period, we abstain from trading during its corresponding trading period.

Fig. 2  The scheme of formation and trading Periods
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•	 When a position is opened during the trading week, it will be closed at the end of 
that week, regardless of whether the pair of spreads passes or fails the cointegration 
tests in the following week.

•	 The ADF unit-root test is conducted with a significance level of 10% . For the KSS 
unit-root test, the asymptotic critical value at a 10% significance level is −1.92.

•	 To assess the performance of our proposed trading strategy (reference-asset-
based approach), we examine various entry thresholds ( α1 = 10%, 15%, and 20% ). 
Although we analyzed different values for the exit threshold ( α2 ), we have chosen not 
to include these results in this study as they do not significantly impact the profitabil-
ity of the strategy. Consequently, we keep α2 fixed at 10%.

•	 To assess the performance of our proposed trading strategy (reference-asset-based 
approach), we conduct a comprehensive performance comparison with established 
methodologies employed in previous research studies. Our evaluation includes back-
testing the cointegration approach, the return-based copula approach, and the value-
based copula approach. The process for selecting the optimal pairs is the same across 
all three approaches. The distinction lies in the manner in which trading signals are 
generated. In the cointegration approach, the z-score provides a measure of how far 
the current spread deviates from its historical average in terms of standard devia-
tions. In the return-based approach, the mispricing index in Eq. (4) generates long or 
short signals. In the level-based approach, the trading signals are determined by the 
cumulative mispricing index defined in Eq. (5).

•	 In the cointegration approach, the entry threshold ( to ) is set at ±2 , whereas the exit 
threshold ( tc ) is established at ±1 . The look-back window (N) employed for calculat-
ing the z-score spans 1 day (24 h).

•	 For the return-based copula approach, the entry threshold ( α1 ) is defined as 10% , and 
the exit threshold ( α2 ) is consistently maintained at 10%.

•	 For the level-based copula approach, the entry threshold ( to ) is specified at ±1 , 
whereas the exit threshold ( tc ) is fixed at 0.

•	 When utilizing 5-min level data, the traditional return-based and level-based copula 
approaches often encounter issues, particularly if the analyzed pairs include crypto-
currencies with low liquidity. In such cases, the 5-min log returns for the less liquid 
assets may frequently equal zero, which contradicts the continuous random variable 
assumption fundamental to copula models. In contrast, our new reference asset-
based approach does not rely on log-returns and instead uses BTCUSDT-a highly 
liquid cryptocurrency-as the reference asset. This method ensures that the spread 
processes defined in Eq. (32) maintain continuity, thereby aligning more closely with 
the underlying assumptions of the model and providing a more robust framework for 
analyzing cryptocurrency pairs.

•	 Realized profit and loss are determined by considering the commission fees and the 
difference between the opening and closing prices of a position.

•	 We initially invest 20,000 USDT, with the coins’ weights set to ensure that each side 
has a maximum initial capital of around 20,000 USDT. It is important to note that the 
size of an order relative to the trading volume of the market significantly influences 
market impact. As highlighted by Bağcı et  al. (2004), minimizing potential trading 
losses due to price impacts requires the capital size to ideally be less than 1% of the 
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daily market volume. To align with this recommendation, we analyze the daily trad-
ing volume of each cryptocurrency coin in our study over the analysis period. From 
this analysis, we determine that setting the initial capital size at 20,000 USDT aligns 
with the suggested threshold.

•	 In practice, at the start of each trading week, we determine a fixed quantity for each 
selected cryptocurrency pair, ensuring the product of the opening price and the 
quantity does not exceed 20,000 USDT for each coin. Specifically, for coin1, we set 
the quantity Q1 such that the product of Q1 and its opening price P1 is less than or 
equal to 20,000 USDT. We apply the same principle to coin2 with Q2 and its price P2 . 
Once the quantities Q1 and Q2 are set, they remain constant throughout the week. 
Whenever we receive a market signal, we either go long or short on coin1 using the 
predetermined quantity Q1 and take the opposite position on coin2 with quantity Q2 . 
Thus, the total investment amount may vary from the 20,000 USDT limit because of 
price fluctuations throughout the week. For instance, if market conditions push the 
total value of our positions to 22,000 USDT, we may use leverage to cover the addi-
tional 2,000 USDT, or conversely, the total investment might drop to 18,000 USDT if 
prices fall. The quantities Q1 and Q2 are updated at the beginning of each subsequent 
week.

•	 It is assumed that all trades are executed using market orders, which typically incur 
higher fees (known as taker fees) compared to the lower fees charged for limit orders 
(known as maker fees). For instance, on Binance, the maker fee of USDT-margined 
futures is set at 0.02% , while the taker fee is set at 0.04%.

Empirical results
Table  5 presents the occurrence rate of selected copulas and their rotations over 104 
trading weeks. The results indicate that copulas of extreme value, such as Tawn type 1 
and 2, and certain two-parameter Archimedean copulas, particularly BB7 and BB8, play 
a significant role in the process of selecting the appropriate model.

Table 5  Occurrence rate of copulas in the study

Copulas and their 
rotations

Hourly data 5-Min data

EG Test (%) KSS Test (%) EG Test (%) KSS Test (%)

Gaussian 4.0 6.7 4.0 7.7

Student-t 6.1 3.8 5.9 5.8

Clayton 6.1 8.7 4.0 1.9

Frank 5.1 3.8 3.0 1.9

Gumbel 0.0 5.8 0.0 2.9

Joe 8.1 5.8 8.9 6.7

BB1 6.1 3.8 4.0 2.9

BB6 1.0 1.9 3.0 2.9

BB7 16.2 13.5 10.9 14.4

BB8 10.1 8.7 15.8 13.5

Tawn type 1 23.2 24.0 20.8 25.0

Tawn type 2 14.1 13.5 19.8 14.4
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Tables 8 and 9 in the Appendix display the cryptocurrency pairs chosen for each trad-
ing week. The results of our trading strategy’s profit and loss calculations with varying 
entry thresholds ( α1 ) are illustrated in Fig. 3. We assess the risk-adjusted performance 
of a strategy using the Sharpe ratio. Table 6 reports the annual returns, volatility, and 

Fig. 3  Copula-based pairs trading strategy P&L and monthly returns
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Sharpe ratios of the proposed strategy, together with the maximum drawdown and the 
return over maximum drawdown (RoMaD), which serve as alternatives to the Sharpe 
ratio, over two data sampling frequencies (hourly and 5-min).3

As shown in Table  6, our proposed pairs trading strategy using the EG cointegra-
tion test yields satisfactory total net returns for both hourly and 5-min data. Specifi-
cally, 5-min data significantly outperform hourly data, with the best total net return at 
α1 = 0.20 achieving 205.9% . Using 5-min data (with the EG test), the annualized net 
return increases with higher entry thresholds, ranging from 56.7% at α1 = 0.10 to 75.2% 
at α1 = 0.20 . This is because the increased trading frequency allows for capitalizing on 
more frequent short-term price discrepancies or trends, which are more prevalent in 
high-frequency data. In contrast, using hourly data (with the EG test), the annualized 
return decreases with higher entry thresholds, ranging from 51.6% in α1 = 0.10 to 35.1% 
at α1 = 0.20 . This suggests that the lower frequency of data may result in missing out 
on optimal trading times, making higher thresholds less effective in capturing profitable 
opportunities in less volatile or slower-moving market conditions.

Transaction costs increase with higher α1 , which could indicate more frequent trad-
ing. Despite the higher costs, the total net return remains strong, especially for finer 
(5-min) data. Although the 5-min strategy shows higher returns, its risk (measured by 

Table 6  Results of the proposed pairs trading strategy in this study utilizing closed prices of twenty 
cryptocurrencies from 22/01/2021 to 19/01/2023

Hourly data 5-min Data

α1 = 0.10 α1 = 0.15 α1 = 0.20 α1 = 0.10 α1 = 0.15 α1 = 0.20

The Proposed Pairs Trading Strategy (Reference-Asset-Based Copula Approach with EG Test)

Total Gross Return 144.1% 113.0% 101.9% 155.1% 183.9% 222.3%

Transaction Cost Percentage −14.9% −17.2% −19.5% −10.3% −14.1% −16.4%

Total Net Return 129.2% 95.8% 82.3% 144.8% 169.8% 205.9%

Annualized Net Return 51.6% 40.0% 35.1% 56.7% 64.5% 75.2%

Annualized Standard Deviation 35.5% 37.7% 41.4% 21.3% 25.2% 19.9%

Annualized Sharpe Ratio 1.45 1.06 0.85 2.66 2.56 3.77

Maximum Drawdown −36.6% −39.6% −41.6% −37.1% −39.2% −30.5%

Total Return over Maximum Draw-
down

3.53 2.42 1.98 3.90 4.33 6.76

Number of Transactions 176 204 228 188 242 266

The Proposed Pairs Trading Strategy (Reference-Asset-Based Copula Approach with KSS Test)

Total Gross Return 113.6% 67.3% 53.6% 55.7% 94.4% 170.3%

Transaction Cost Percentage −15.5% −18.8% −21.5% −9.1% −11.4% −15.2%

Total Net Return 98.1% 48.5% 32.1% 46.6% 83.0% 155.1%

Annualized Net Return 40.9% 21.9% 15.0% 21.1% 35.4% 60.0%

Annualized Standard Deviation 31.9% 33.0% 34.8% 48.5% 46.9% 17.7%

Annualized Sharpe Ratio 1.25 0.66 0.43 0.44 0.75 3.39

Maximum Drawdown −34.6% −34.7% −38.5% −160.0% −160.0% −163.5%

Total Return over Maximum Draw-
down

2.84 1.40 0.84 0.29 0.52 0.95

Number of Transactions 184 222 252 164 200 256

3  Transaction fees are taken into account in all calculations.
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the annualized standard deviation) is lower than that of the hourly data for higher levels 
α1 . This suggests a more efficient market capture on a finer scale.

For the EG test, maximum drawdowns in the hourly data range between −36.6% and 
−41.6% and increase with parameter α1 . This finding suggests a direct correlation between 
the risk threshold α1 and exposure to potential losses. RoMaD values decrease from 3.53 
to 1.98 as α1 increases, indicating less favorable risk-return ratios at higher thresholds. 
In contrast, the 5-min data displays slightly better maximum drawdown values and sig-
nificantly higher RoMaD values (3.90, 4.33, and 6.76), suggesting that shorter sampling 
intervals may provide more efficient risk-return trade-offs under the EG test, especially at 
α1 = 0.20 , which combines a relatively lower maximum drawdown with higher returns.

A comparison of the EG and KSS tests for the proposed cryptocurrency pairs trad-
ing strategy reveals distinct performance profiles in both hourly and 5-min data 
sets. Under the EG test, the hourly and 5-min data strategies demonstrate higher 
overall net returns and more favorable risk-adjusted returns, as indicated by higher 
Sharpe ratios and RoMaD values. Specifically, the 5-min data in the EG test achieve 
an impressive annualized net return of up to 75.2% and a Sharpe ratio of 3.77, sug-
gesting an efficient balance between risk and return. In contrast, the results of the 
KSS test are significantly inferior, with the 5-min data suffering from extraordinar-
ily high maximum drawdowns, exceeding −160% , and significantly lower RoMaD val-
ues. This indicates a less favorable balance between risk and return. Furthermore, the 
net returns and Sharpe ratios under the KSS test are consistently lower than those 
observed in the EG test, underscoring the potential volatility and risk associated with 
the KSS testing approach, particularly with high-frequency data.

In addition, we assess our strategy by comparing it to the conventional approaches 
employed in prior research studies, including the cointegration approach, the return-
based copula approach, and the level-based copula approach. As shown in Table 7, the 
Pairs Trading Strategy, using a cointegration approach, exhibited a distinct disparity 
between performance on hourly and 5-min data. The results for the hourly data were 
relatively moderate, with total gross returns at 33.8% and 19.3% for EG and KSS tests, 
respectively. This strategy was heavily impacted by transaction costs, which were par-
ticularly high and resulted in negative net returns across both tests. The 5-min data 
showed a more pronounced effect, yielding higher gross returns; however, it also faced 
astronomical transaction costs, leading to drastically negative net returns. This sug-
gests that while the approach can capture gains, the cost structure makes it unsustain-
able, especially at higher trading frequencies. Note that in cases where the calculation 
of the geometric annualized net return was not feasible due to the highly negative val-
ues of total net returns, the arithmetic annualized net return was computed instead.

The return-based copula approach to pairs trading delivered higher gross returns com-
pared to the cointegration method, particularly in the 5-min data where returns reached 
up to 249.6% (EG Test). However, this approach also suffered from extreme transaction 
costs, which drastically eroded profits and resulted in significant net losses ( −40.1 to 
−1138.9% across various tests and data frequencies). The approach appears to aggres-
sively capitalize on market movements but at a cost inefficiency that undermines its 
viability. This is reflected in very negative annualized Sharpe ratios and substantial maxi-
mum drawdowns, indicating high risk without proportional returns.
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Table 7  Results from pairs trading strategies employed in prior research studies utilizing closed 
prices of twenty cryptocurrencies from 22/01/2021 to 19/01/2023

Pairs trading strategy (cointegration approach)

to = ±2, tc = ±1, N = 24 Hourly data 5-min Data

EG Test KSS Test EG Test KSS Test

Total Gross Return 33.8% 19.3% 121.4% 63.6%

Transaction Cost Percentage −57.5% −28.5% −681.2% −339.9%

Total Net Return −23.7% −9.2% −559.8% −276.3%

Annualized Net Return −12.8% −4.6% −283.4% −140.0%

Annualized Standard Deviation 14.7% 7.6% 1828.4% 675.4%

Annualized Sharpe Ratio −0.87 −0.61 −0.15 −0.21

Maximum Drawdown −37.6% −25.9% −558.5% −558.5%

Total Return over Maximum 
Drawdown

−0.63 −0.24 −1.00 −0.49

Number of Transactions 1324 1296 15676 15692

Pairs Trading Strategy (Return-Based Copula Approach)

α1 = 10%, α2 = 10% Hourly data 5-min Data

EG Test KSS Test EG Test KSS Test

Total Gross Return 61.9% 39.1% 249.6% 127.1%

Transaction Cost Percentage −102.0% −52.0% −1388.4% −689.2%

Total Net Return −40.1% −12.9% −1138.9% −562.1%

Annualized Net Return −22.7% −6.5% −577.0% −284.8%

Annualized Standard Deviation 22.6% 10.4% 11880.2% 684.5%

Annualized Sharpe Ratio −1.00 −0.62 −0.05 −0.42

Maximum Drawdown −53.5% −53.3% −1102.9% −1102.9%

Total Return over Maximum 
Drawdown

−0.75 −0.24 −1.03 −0.51

Number of Transactions 2204 2172 31354 31420

Pairs Trading Strategy (Level-Based Copula Approach)

to = ±1, tc = 0 Hourly Data 5-min Data

EG Test KSS Test EG Test KSS Test

Total Gross Return 22.5% 5.5% 22.2% 8.9%

Transaction Cost Percentage −3.1% −1.7% −4.3% −2.0%

Total Net Return 19.4% 3.8% 17.9% 6.9%

Annualized Net Return 9.3% 1.8% 8.6% 3.3%

Annualized Standard Deviation 9.8% 5.4% 9.0% 4.5%

Annualized Sharpe Ratio 0.95 0.34 0.96 0.74

Maximum Drawdown −9.5% −9.6% −15.9% −15.9%

Total Return over Maximum 
Drawdown

2.03 0.40 1.13 0.44

Number of Transactions 66 70 136 122

Buy & hold strategy

Bitcoin buy & hold Portfolio buy & hold

Total Net Return −31.2% 28.3%

Annualized Net Return −17.1% 13.3%

Annualized Standard Devia-
tion

78.1% 103.4%

Annualized Sharpe Ratio −0.22 0.13
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In the level-based copula approach, we initiated a long-short trade when one of 
the CMIs in Eq.  (5) surpasses the opening threshold ( to ), while simultaneously, the 
other CMI drops below −to for the chosen pair. The positions are terminated when 
the CMI of the short position falls below the closing threshold ( tc ) and the CMI of the 
long position rises above −tc . According to the data in Table 7, the level-based copula 
approach presents a more conservative and stable outcome than other conventional 
strategies. It generates positive net returns across all test scenarios with lower trans-
action costs and maximum drawdowns. This strategy achieved annualized net returns 
up to 9.3% and maintained Sharpe ratios close to or above 0.95, which still implies 
that our proposed pairs trading method with α1 = 0.20 exhibits superior risk-adjusted 
performance compared to the level-based approach. Furthermore, it’s noteworthy 
that our proposed strategy entails a notably higher frequency of transactions in con-
trast to the level-based approach.

Finally, to compare our strategy’s results with those of the buy-and-hold strategy, we 
use a passive investment approach that involves holding a relatively steady portfolio for 
an extended period, despite short-term market fluctuations. On the one hand, the Bitcoin 
buy-and-hold strategy shows a negative annualized Sharpe ratio ( −0.22 ), indicating poor 
risk-adjusted performance. On the other hand, the portfolio buy-and-hold strategy4 shows 
a positive annualized Sharpe ratio (0.13), indicating better risk-adjusted performance than 
the Bitcoin buy-and-hold strategy. The proposed pairs-trading strategy demonstrates 
impressive performance, surpassing the portfolio buy-and-hold strategy by up to 29 times.

In summary, the proposed pairs-trading strategy employing a reference-asset-based 
copula approach with EG and KSS tests significantly outperforms other approaches 
examined in terms of both risk-adjusted returns and overall profitability. This strategy 
demonstrates a robust capability to achieve high net returns of up to 205.9% and supe-
rior Sharpe ratios as high as 3.77, indicating an excellent balance between return and 
risk. In contrast, other strategies, such as the cointegration approach, return-based, and 
level-based copula methods, though varying in their risk and return profiles, consist-
ently underperformed with either negative net returns or significantly lower Sharpe 
ratios. Additionally, conventional buy & hold strategies lag, suffering from substantial 
drawdowns and lower overall returns. The reference asset-based approach not only min-
imizes drawdowns compared to these methods but also maximizes efficiency and prof-
itability, making it the most advantageous strategy among those evaluated within the 
volatile cryptocurrency market.

Table 7  (continued)

Buy & hold strategy

Bitcoin buy & hold Portfolio buy & hold

Maximum Drawdown −77.4% −82.7%

Total Return over Maximum 
Drawdown

−0.40 0.34

4  The buy-and-hold strategy in the portfolio involves investing in all twenty cryptocurrency coins with equal weights at 
the start of the study, retaining them throughout the trading periods, and ultimately selling them at the end of the study 
period.
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Conclusion
This study develops a novel pairs trading framework for twenty Binance USDT-mar-
gined futures coins, combining copula-based and cointegration-based approaches. The 
methodology sets BTCUSDT as the reference asset and identifies other cryptocurrency 
coins that are cointegrated with it. We employ both the EG two-step method and the 
KSS cointegration test to detect cointegration, ranking the cointegrated coins based on 
Kendall’s Tau correlation coefficients. The top two correlated assets are selected for trad-
ing over a one-week period, with weekly updates. Trading rules are based on the copula 
conditional probabilities of the spread processes corresponding to the selected assets. 
Various trading triggers are established and the strategy is rigorously back-tested.

Our strategy significantly outperforms traditional pairs trading methods including: 
the cointegration approach, return-based copula approach, level-based copula approach, 
and various buy-and-hold strategies across key performance metrics, such as Sharpe 
ratios and net returns. It demonstrates notable improvements in risk-adjusted returns 
and efficiency, particularly in high-frequency trading environments like the 5-min data 
sampling. This performance underscores the advantages of our approach in capturing 
short-term price discrepancies more effectively than traditional methods. Moreover, our 
findings emphasize the importance of choosing the appropriate entry thresholds and 
trading frequencies, as these factors critically influence the profitability and volatility of 
the trading strategy.

This study contributes to the academic literature by providing a refined methodo-
logical approach to pairs trading. Further, it also offers practical insights that could be 
beneficial for practitioners in the cryptocurrency trading space. By effectively integrat-
ing different concepts and adapting them to the unique characteristics of cryptocurren-
cies, our proposed strategy promises enhanced profitability, serving as a valuable tool for 
traders and investors seeking to exploit inefficiencies in rapidly evolving markets.

Appendix
Elliptical Copulas: The density function of any elliptical distribution fX is shown in 
Eq. (17). In the case of bivariate Gaussian distribution g(x) := e−x/2 , kn := 1/(2π) , and 
the probability density function of X = (X1,X2) is
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where ρ is the correlation between random variables X1 and X2 and between σ1 > 0 and 
σ2 > 0 . If µ1 = µ2 = 0 and σ1 = σ2 = 1 , then the density and distribution functions of 
the standard bivariate Gaussian distribution are obtained by

Using Sklar’s theorem, as shown in 13 and 35, the bivariate Gaussian copula is defined by

In the bivariate t distribution, g(.) and kn function in the formula 17 are defined by 
g(x) := (1+ x/ν)−(ν+2)/2 , kn := Ŵ(ν+2

2 )/
(
Ŵ(ν2 )νπ

)
 , and the probability density function 

of T = (T1,T2) is obtained by

(34)
fX (x;µ,�) =

1

2π |�|1/2
e−

1
2

[
(x−µ)T�−1(x−µ)

]

µ =

(
µ1

µ2

)
, � =

(
σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,

(35)
φX1X2(x1, x2; ρ) =

1

2π
√
1− ρ2

e
−

x21−2ρx1x2+x22
2(1−ρ2)

�X1X2(u1,u2; ρ) =

∫ u1

−∞

∫ u2

−∞

φX1X2(x1, x2; ρ) dx1 dx2

(36)C(u1,u2; ρ) := �X1X2(�
−1
X1

(u1),�
−1
X2

(u2); ρ)

(37)fT (t; ν,µ,�) =
Ŵ

(
ν+2
2

)

Ŵ
(
ν
2

)
νπ |�|1/2

[
1+

1

ν
(t − µ)T�−1(t − µ)

]−(ν+2)/2

Table 10  Bivariate Archimedean copulas distributions

Name Bivariate copula distribution C(u1, u2) (ui = 1− ui) Generator φ(t) Parameters

Clay-
ton

[
max

(
u
−θ
1 + u

−θ
2 − 1, 0

)]−1/θ 1
θ

(
t
−θ − 1

)
θ > 0

Gum-
bel exp

[
−

[
(− ln u1)

θ + (− ln u2)
θ

]1/θ] (− ln(t))θ θ ≥ 1

Frank
−θ−1 ln

[
1+

(
e
−θ − 1

)−1(
e
−θu1 − 1

)(
e
−θu2 − 1

)]
− ln

(
e
−θ t−1
e−θ−1

)
θ ∈ R \ {0}

Joe
1−

[(
1− u1

)θ
+

(
1− u2

)θ
−

(
1− u1

)θ (
1− u2

)θ
]1/θ

− ln
(
1− (1− t)θ

)
θ ≥ 1

BB1 [
1+

[(
u
−θ
1 − 1

)δ
+

(
u
−θ
2 − 1

)δ]1/δ]−1/θ (
t
−θ − 1

)δ θ > 0, δ ≥ 1

BB6
1−

[
1− exp

(
−

[[
− ln

(
1− u1 θ

)]δ
+

[
− ln

(
1− u1 θ

)]δ]1/δ
)]1/θ

1−

[
1− exp

(
−

[[
− ln

(
1− u1

θ
)]δ

+
[
− ln

(
1− u1

θ
)]δ]1/δ

)]1/θ

(
ln
(
1− (1− t)θ

))δ θ ≥ 1, δ ≥ 1

BB7
1−

[
1−

((
1− u1

θ
)−δ

+
(
1− u2

θ
)−δ

− 1

)−1/δ]1/θ (
1− (1− t)θ

)−δ

− 1
θ ≥ 1, δ > 0

BB8
δ−1

[
1−

(
1−

[
1− (1− δ)θ

]−1[
1−

(
1− δu1

)θ ][1−
(
1− δu2

)θ ]
)1/θ ]

− ln

(
1−(1−δt)θ

1−(1−δ)θ
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θ ≥ 1, 0 < δ ≤ 1



Page 30 of 32Tadi and Witzany ﻿Financial Innovation           (2025) 11:40 

where ν > 0 is the degree of freedom parameter and µ and σ are the same as 34. If 
µ1 = µ2 = 0 and σ1 = σ2 = 1 , and knowing that Ŵ

(
ν+2
2

)
/Ŵ

(
ν
2

)
= ν

2 , the density and 

distribution function of the standard bivariate Student-t distribution are obtained by

Then the bivariate Student-t copula is defined by
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