
 Electronic copy available at: https://ssrn.com/abstract=3212975 

 

 

1 

 

Estimation of SVJD 

Models with Bayesian 

Methods and Power-

Variation Estimators 
 

Milan Fičura  Jiří Witzany    
 

1.1 Introduction 

Stochastic-Volatility Jump-Diffusion (SVJD) models have become an established tool for 

simulating the paths of the future asset price evolution which can subsequently be used for 

tasks such as Value at Risk calculation, option pricing, volatility forecasting or quantitative 

trading. As the SVJD model estimation includes the estimation of the evolution of several 

series of latent state variables (i.e. the unobservable stochastic variances, jump occur-

rences, jump sizes, etc.), it is most commonly performed with Bayesian methods such as 

Markov-Chain Monte-Carlo (MCMC) and Particle Filters, with the MCMC being used for 

the in-sample estimation [Eraker, Johannes and Polson, 2003; Witzany, 2013], while the 

Particle Filters can be used for the sequential estimation of the latent state variables for the 

purpose of predictions [Fulop, Li and Yu, 2015]. 

Independently to the advances in the estimation methods for SVJD models, an alternative 

volatility and jump modelling framework emerged in the recent years, utilizing high-fre-

quency returns and the asymptotic theory of power variations [Barndorff-Nielsen and 

Shephard, 2004; Andersen, Bollerslev and Diebold, 2007]. The approach consists of an 

estimation of the volatility and the jump component of the asset returns with power-varia-

tion estimators that converge to these quantities when the return sampling frequency con-

verges to infinity. By utilizing the high-frequency returns it is then possible to get very 

accurate estimates of the evolution of the asset price volatility and jumps, which can then 

be modelled with standard time series models as if they were observable. 

Nevertheless, treating the inherently noisy power-variation estimators as if they were cor-

responding to the latent stochastic variances and jumps may be sub-optimal in certain 

cases. Additionally, in applications where the estimation of the future asset price distribu-

tion is required (i.e. option pricing, VaR estimation, etc.), it may still be useful to estimate 

a full SVJD model with Bayesian methods, that can easily be used to perform simulations 
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of the future asset price evolution, while taking into account the uncertainties in the pa-

rameter estimation and the uncertainty about the current values of the latent states.  

Due to the reasons mentioned above, we present an approach of how to utilize the infor-

mation from the high-frequency power-variation estimators as an additional source of in-

formation in the Bayesian estimation of SVJD models. The fit of these models is expected 

to better correspond to the past evolution of the stochastic variances and jumps, as it uses 

significantly more accurate estimates for their estimation, while at the same time keeping 

all of the benefits of the SVJD model framework. 

Two models are proposed, the SVJD-RV model [Takahashi, Omori and Watanabe, 2009], 

utilizing the realized variance estimator as an additional source of information for the es-

timation of the stochastic variances, and a SVJD-RV-Z model [Fičura and Witzany, 2015], 

utilizing additionally the Z-Statistics estimator as an additional source of information for 

the estimation of jumps. Both of the models are compared with a standard SVJD model 

(using only the information about the daily returns), on simulated as well as empirical for-

eign exchange rate time series.  

The purpose of the simulation study is to asses, whether the extended models (SVJD-RV 

and SVJD-RV-Z) provide more accurate estimates of the underlying stochastic variances 

and jumps than the basic SVJD model and non-parametric approaches. MCMC algorithm 

is used to estimate the models on simulated time series with different jump magnitudes and 

the fit to the simulated variances and jumps is then evaluated. 

In the empirical study performed on foreign exchange rates (EUR/USD, GBP/USD, 

USD/CHF and USD/JPY), the focus is placed on the evaluation of the out-sample predic-

tive power of the models with regards to the future quadratic variations (approximated with 

realized variances). MCMC algorithm is used to estimate the model parameters and latent 

state variables on the in-sample period, while Particle Filters are used to sequentially esti-

mate the latent state variable evolution in the out-sample period. Simulations are then used 

to calculate forecasts of the future quadratic variation at different horizons at each time 

point, with the forecast accuracy of the models evaluated with the R-Squared criterion. 

The rest of the chapter is organized as follows. In the next subsection, the realized variance 

estimator and the Z-Estimator of jumps are presented. In the following two subsections, 

the SVJD, SVJD-RV and SVJD-RV-Z models are explained, and the MCMC and Particle 

Filter algorithms used for their estimation are described. The following two subsections 

contain the simulation study of the model in-sample fit and the empirical study of their 

out-sample predictive power. The last subsection provides a conclusion of the main results 

of the performed studies. 

1.2 Power-Variation Estimators 

Power-Variation estimators represent a non-parametric, model-free approach to estimate 

the volatility and jump components of financial time series. In the last two decades they 

have proved to be extremely useful in a wide variety of applications. In our current study 
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the estimators are used as additional sources of information (in addition to the daily returns) 

for the estimation of Stochastic-Volatility Jump-Diffusion (SVJD) models.  

Let us assume that the logarithmic price of an asset follows a generally defined Stochastic-

Volatility Jump-Diffusion process expressed with the following differential equation: 

 

where 𝑝(𝑡) is the logarithm of the asset price, 𝜇(𝑡) is the instantaneous drift rate, 𝜎(𝑡) is 

the instantaneous volatility, 𝑊(𝑡) is a Wiener process, 𝑗(𝑡) is a process determining the 

size of the jumps and 𝑞(𝑡) is a counting process whose differential determines the times of 

the jump occurrences. 

The total variability of the price process over a period of time between 𝑡 − 1 and 𝑡 can be 

expressed with its quadratic variation, defined as follows: 

 

where the first term on the right side, representing the continuous component of the price 

variability, is called integrated variance, while the second term, representing the discon-

tinuous component of the price variability (i.e. the effect of the jumps) is called jump var-

iance. We can thus rewrite the equation as follows: 

 

where 𝐼𝑉(𝑡) denotes the integrated variance and 𝐽𝑉(𝑡) the jump variance. 

As all of the quantities, 𝑄𝑉(𝑡), 𝐼𝑉(𝑡) and 𝐽𝑉(𝑡), are directly unobservable from the asset 

price evolution, they have to be estimated. In the case when only the daily price returns are 

available, this is a challenging task and Bayesian methods have to be used in order to esti-

mate the posterior distribution of the latent state time series of the stochastic variances, 

jump occurrences and jump sizes. In the case when the intraday, high-frequency data are 

available, however, it is possible to utilize the asymptotic theory of power variations in 

order to construct estimators that converge to the target quantities, i.e. either to 𝑄𝑉(𝑡), 

𝐼𝑉(𝑡) or 𝐽𝑉(𝑡), when the return sampling frequency increases. If we could increase the 

sampling frequency to infinity, these estimators would provide perfect estimates of the 

underlying quantities. In practical settings, infinitely high sampling frequency is unachiev-

able, high-frequency returns (tick, 1-minute, 5-minute, etc.) are thus commonly being used 

causing the estimators to be plagued by certain levels of noise, and the estimators may 

sometimes even be biased due to microstructure noise effects (finiteness of the price grid, 

bid-ask bounce, etc.). In spite of this, power-variation estimators proved to be sufficiently 

accurate in practice and are currently being commonly used in a wide variety of tasks, 

especially in the area of volatility forecasting [Andersen, Bollerslev and Diebold, 2007]. 

 𝑑𝑝(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) +  𝑗(𝑡)𝑑𝑞(𝑡) (1) 

 

𝑄𝑉(𝑡) = ∫ 𝜎2(𝑠)𝑑𝑠

𝑡

𝑡−1

+ ∑ 𝜅2

𝑡−1≤𝑠<𝑡

(𝑠), (2) 

 𝑄𝑉(𝑡) = 𝐼𝑉(𝑡) +  𝐽𝑉(𝑡) (3) 
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In the presented study, the realized variance estimator is used to estimate the quadratic 

variation of the underlying price process. Realized variance, 𝑅𝑉(𝑡, ∆), proposed by Ander-

sen and Bollerslev [1998], is defined, for a given frequency, as the sum of squared returns 

on some higher frequency, and it should converge to the quadratic variation of the price 

process (on the lower frequency), when the sampling frequency of the higher-frequency 

returns increases.  

Specifically, denoting ∆ as some intraday time interval and 𝑟(𝑡, ∆) as the logarithmic return 

between 𝑡 − ∆ and 𝑡, we can define the realized variance as follows: 

 

and it holds that RV(t, ∆) → QV(t) as ∆ → 0. 

The estimation of the jump component of the time series is less straightforward and it is 

commonly performed by using the difference between an estimate of 𝑄𝑉(𝑡) and 𝐼𝑉(𝑡). As 

already mentioned, the integrated quarticity can be estimated with the realized variance. 

To estimate the integrated variance, a realized bipower variation is commonly used (Barn-

dorff-Nielsen and Shephard, 2004). It can be defined as follows: 

and it holds that BV(t, ∆) → IV(t) as ∆ → 0. 

The contribution of the jump component to the time series variability (i.e. the jump vari-

ance) can thus be roughly estimated as: 

 

where RJV(t, ∆) is the realized jump variance and  RJV(t, ∆) → ∑ κ2
t−1≤s<t (s) as ∆ → 0. 

Nevertheless, as long as we are not able to sample the asset returns at an infinitely high 

sampling frequency, the estimates of RV(t, ∆) and BV(t, ∆) are inherently plagued by some 

noise, causing the value of RJV(t, ∆) to differ from zero in almost all of the days in the time 

series (reaching even negative values, when the noise causes the bipower variation to be 

greater than the realized variance). 

As we would like the to pick only the statistically significant jumps occurring in the time 

series, it has been proposed to normalize the estimator and use only the values when it is 

statistically significantly larger than zero, indicating a presence of a jump (Barndorff-Niel-

sen and Shephard, 2004). In order to determine whether a given value RJV(t, ∆) is signifi-

cantly different from zero or not, it is necessary to model the volatility of the estimator 

which can be done by using the integrated quarticity: 

 

 

RV(t, ∆) =  ∑r2(t − 1 + j∆, ∆),

1/∆

j=1

 (4) 

 

BV(t, ∆) =
π

2
 ∑|r(t − 1 + j∆, ∆)||r(t − 1 + (j − 1)∆, ∆)|,

1/∆

j=2

 (5) 

 RJV(t, ∆) = RV(t, ∆) − BV(t, ∆), (6) 
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which can consistently be estimated, even in the presence of jumps, with the realize tri-

power quarticity [Andersen, Bollerslev and Diebold, 2007], defined as follows: 

 

as it holds that TQ(t, ∆) → IQ(𝑡) when ∆ → 0. 

Using the RV(t, ∆), BV(t, ∆) and TQ(t, ∆), it is possible to define the so called Z-Estimator 

of jumps, Z(t, ∆), developed by Barndorff-Nielsen and Shephard [2004] and Andersen, 

Bollerslev and Diebold [2007]. The estimator uses appropriately normalized relative dif-

ferences between RV(t, ∆) and BV(t, ∆), that should asymptotically follow a standard nor-

mal distribution as long as the underlying price process does not contain jumps. The esti-

mator is defined as: 

 

As in the case of no jumps in the time series, the asymptotic distribution of 𝑍(t, ∆) is the 

standard normal, it is possible to identify jumps in the time series based on the days when 

the values of 𝑍(t, ∆) surpass a certain sufficiently high quantile 𝛼 of the standard normal 

distribution. The jump variance EJV(t, ∆) can thus be estimated as: 

 

where EJV(t, ∆) is the jump variance estimator (whose non-zero values correspond to jump 

occurrences), 𝐼{. } is the indicator function and Φ(α)−1 is the quantile function of the stand-

ard normal distribution, with α being the significance level used for the jump estimation. 

As we want the sum of the jump estimator and the integrated variance estimator to be equal 

to the realized variance, we need to re-estimate the integrated variance as: 

 

In the following parts of the study, the values of RV(t, ∆), EIV(t, ∆) and EJV(t, ∆) are used 

as additional sources of information for the estimation of the latent state variables (sto-

chastic variances, jump occurrences and jump sizes) in the extended versions of the basic 

SVJD model (namely in the SVJD-RV model and the SVJD-RV-Z model). 

 

 

 

IQ(𝑡) = ∫ 𝜎4(𝑠)𝑑𝑠

𝑡

𝑡−1

 (7) 

 

TQ(t, ∆) =
π3/2

4∆
Γ(

7

6
)

−3

 ∑|r(t − 1 + j∆, ∆)|4/3|r(t − 1 + (j − 1)∆, ∆)|4/3|r(t − 1 + (j − 2)∆, ∆)|4/3,

1/∆

j=3

 (8) 

 
𝑍(t, ∆) =

[𝑅𝑉(𝑡, ∆) − 𝐵V(t, ∆)]𝑅𝑉(𝑡, ∆)−1

√[(𝜋/2)2 + 𝜋 − 5]max{1, 𝑇𝑉(t, ∆)𝐵V(t, ∆)−2}∆
 (9) 

 EJV(t, ∆) = 𝐼{𝑍(t, ∆) > Φ(α)−1}[RV(t, ∆) − BV(t, ∆)] (10) 

 EIV(t, ∆) = RV(t, ∆) − 𝐼{𝑍(t, ∆) > Φ(α)−1}[RV(t, ∆) − BV(t, ∆)] (11) 
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1.3 SVJD, SVJD-RV and SVJD-RV-Z Models 

In this section, the Stochastic-Volatility Jump-Diffusion (SVJD) model with self-exciting 

jumps is explained as well as two extended versions of the model, utilizing either the real-

ized variance (SVJD-RV) or the realized variance together with the Z-Estimator of jumps 

(SVJD-RV-Z) as additional sources of information for the estimation of the latent state 

time series of the stochastic variances, jump occurrences and jump sizes. Due to the latent 

state time series in the models, they need to be estimated with Bayesian methods such as 

the MCMC algorithm and Particle Filters which are explained in detail in the next section. 

The basic SVJD model with self-exciting jumps consists of 3 equations, one determining 

the behaviour of the logarithmic returns, one determining the behaviour of the stochastic 

variances and one determining the intensity of the jump occurrences. The stochastic vari-

ances are, in the presented approach, expected to follow the log-variance model, while the 

jumps follow a self-exciting Hawkes process [Fulop, Li and Yu, 2015]. The SVJD-RV 

model adds a fourth equation into the model, determining the relationship between the 

realized variances and the stochastic variances [Takahashi, Omori and Watanabe, 2009], 

while the SVJD-RV-Z model adds an additional fifth equation, determining the relation-

ship between the Z-Statistics and the jump occurrences [Ficura and Witzany, 2015]. In all 

of the cases, the models are formulated in discrete time, although the original SVJD model 

can be formulated in the continuous time as well. 

The first equation, governing the evolution of the log-returns, is defined as follows: 

 

where 𝑟(𝑡) is the daily logarithmic return, defined as 𝑟(𝑡) = 𝑝(𝑡) − 𝑝(𝑡 − 1), with 𝑝(𝑡) 

being the logarithm of the closing price at day 𝑡. Parameter 𝜇 determines the unconditional 

mean daily return, 𝜎(𝑡) is the conditional volatility, 𝜀(𝑡)~𝑁(0,1) is a standard normal 

random variable, 𝐽(𝑡)~𝑁(𝜇𝐽, 𝜎𝐽) is a normally distributed random variable determining 

the jump sizes and 𝑄(𝑡)~Bern[𝜆(𝑡)] is a variable determining the times of jump occur-

rences, following a Bernoulli process with intensity 𝜆(𝑡). 

The second equation describes the evolution of the daily conditional variances. In the pre-

sented approach, these are assumed to follow a log-variance model, in which the logarithm 

of the daily conditional variance ℎ(𝑡) = ln[𝜎2(𝑡)], follows an AR(1) process. The condi-

tional variance equation is thus as follows: 

 

where ℎ(𝑡) = ln[𝜎2(𝑡)] is the logarithm of the conditional variance of the daily returns, 𝛼 

is the constant, which is linked to the unconditional variance via 𝛼 = (1 − 𝛽)𝜃, where 𝜃 

denotes the long-term unconditional log-variance, 𝛽 is the autoregressive coefficient of 

the AR(1) model, 𝛾 is the volatility of the log-variance and 𝜀𝑉(𝑡)~𝑁(0,1) is a series of 

standard normal random variables for which we assume to be uncorrelated with 𝜀(𝑡) 

 𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) (12) 

 ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) (13) 
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as we work with foreign exchange rate time series for which no long-term correlation be-

tween the returns and volatility seems to be present. 

The third equation models the jump intensity as implied by the self-exciting Hawkes pro-

cess that is used to model the jump behaviour. The Hawkes process allows us to model the 

jump clustering effect by assuming that the jumps self-excite in the sense that an occur-

rence of a jump temporarily increases the probability of further jumps. The discrete version 

of the Hawkes process jump intensity 𝜆(𝑡) is: 

 

where 𝜆(𝑡) is the jump intensity at day 𝑡, αJ is the constant, which is linked to the long-

term jump intensity 𝜃𝐽 via αJ = (1 − βJ − 𝛾𝐽)𝜃𝐽, parameter 𝛽𝐽 is the rate of the exponential 

decay of the jump intensity, and 𝛾𝐽 is the increase of jump intensity in the day following a 

jump occurrence. As we can see, in the day immediately following a jump occurrence, the 

jump intensity increases by 𝛾𝐽, decaying in the subsequent days gradually back to its long-

term level  𝜃𝐽 at an exponential rate 𝛽𝐽. 

Equations 12, 13 and 14 fully characterize the standard SVJD model with self-exciting 

jumps. The following two equations correspond to the SVJD-RV model [Takahashi, Omori 

and Watanabe, 2009] and the SVJD-RV-Z model [Ficura and Witzany, 2015]. 

The fourth equation establishes a link between the realized variance, adjusted for the oc-

curred jumps, and the stochastic variance of the price process. It is defined as follows: 

 

The equation 16 can be derived from the definitions of the quadratic variation and the 

realized variance, and it tells us that the logarithm of the realized variance, adjusted for the 

estimated jump variance (i.e. the squared jump component of the SVJD model), provides 

an unbiased estimate of the underlying stochastic log-variance ℎ(𝑡). The realized variance 

estimator is, however, assumed to be plagued by some estimation noise, given by 

𝜀𝑅𝑉(𝑡)~𝑁(0,1), multiplied with the standard deviation of the noise 𝜎𝑅𝑉.  

Although in practical applications may the realized variance be a biased estimator of the 

quadratic variation, due to the microstructure noise effects, present at the ultra-high fre-

quencies, the presented approach assumes the estimator to be unbiased (which is approxi-

mately true if lower frequencies, such as the 15-minute one, are used for the RV estima-

tion). Nevertheless, a bias of the RV estimator could easily be incorporated into the model 

if needed, by adding a constant (i.e. additional parameter) to the right-hand side of the 

equation. The approach would then be robust to the microstructure noise related bias and 

may thus be applied even to the higher-frequency returns. 

The fifth equation of the model establishes a link between the values of the Z-Statistics 

and the jumps estimated by the SVJD-RV-Z model. A methodological problem had to be 

solved in this case, as the Z-Statistics, working on the intraday frequencies, has the ten-

dency of indicating certain jump occurrences on almost every day in the time series, due 

 𝜆(𝑡) = 𝛼𝐽 + 𝛽𝐽𝜆(𝑡 − 1) + 𝛾𝐽𝑄(𝑡 − 1) (14) 

 log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) (15) 
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to the small jumps occurring at the very high-frequencies. As the SVJD model works on 

the daily frequency, we are not interested in the small intraday jumps so much, but rather 

want to estimate the large jumps, with a significant impact on the distribution of the daily 

returns. In order to utilize the Z-Statistic for a more accurate estimation of the large jumps, 

influencing the daily return distribution, we utilize the fact that higher jumps tend to in-

crease the Z-Statistics more than the small jumps. Different mean values of the Z-Statistic 

can thus be expected in the days in which there are either no jumps or only small, intraday 

jumps, then on the days when the large price jumps occur. This leads us to the following 

relationship between the 𝑍(t) and the 𝑄(t): 

 

where 𝜇𝑍 corresponds to the mean value of 𝑍(𝑡) on the days with either no jumps, or only 

small jumps, that are not visible on the daily frequency, so the daily-frequency jump esti-

mate 𝑄(𝑡) equals to zero, while 𝜉𝑍 measures the increase in the mean value of 𝑍(t) in the 

days when the large jumps occur and 𝑄(𝑡) is thus equal to one. Additionally, 𝜎𝑍 corre-

sponds to the volatility of the 𝑍(𝑡), which may be different from 1 due to the effect of the 

jumps, while 𝜀𝑅𝑉(𝑡)~𝑁(0,1) is a Gaussian white noise. 

Equations 12-15 characterize the SVJD-RV model, while the equations 12-16 correspond 

to the SVJD-RV-Z model. 

1.4 Bayesian Estimation of SVJD Models 

In order to estimate the parameters of the proposed SVJD models and the series of their 

latent state variables (stochastic variances, jump occurrences and jump sizes), Bayesian 

estimation methods are utilized. Specifically, a MCMC algorithm is used to estimate the 

parameters of the models and the evolution of the latent state variables in the in-sample 

period [Witzany, 2013)], while a Sequential Importance Resampling (SIR) particle filter 

is used to sequentially estimate the evolution of the latent state variables in the out-sample 

period, with simulations being used to construct predictions. 

MCMC is a Bayesian estimation method that enables us to sample from the high-dimen-

sional joint posterior density of the model parameters and latent state variables, denoted as 

𝑝(Θ|data), where Θ = (𝜃1, … , 𝜃𝑘) denotes the vector of all of the model parameters and 

latent state variables, by constructing a Markov Chain that converges to this joint posterior 

density, while using only the information about the univariate conditional densities 

𝑝(𝜃𝑗|𝜃𝑖, 𝑖 ≠ 𝑗, data), that are far easier to analytically express and sample from. 

Multiple types of the MCMC algorithm exist with the most straightforward one being the 

Gibbs Sampler, that can be used to sample form the joint posterior density 𝑝(Θ|data) in 

the case when we are able to sample from the conditional densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data).  

The Gibbs sampler proceeds as follows: 

0. Assign a vector of initial values to Θ0 = (𝜃1
0, … , 𝜃𝑘

0) and set 𝑗 = 0 

1. Set 𝑗 = 𝑗 + 1 

 𝑍(𝑡) = 𝜇𝑍 + 𝜉𝑍𝑄(𝑡) + 𝜎𝑍𝜀𝑍(𝑡) (16) 
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2. Sample 𝜃1
𝑗
~𝑝(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) 

3. Sample 𝜃2
𝑗
~𝑝(𝜃2|𝜃1

𝑗
, 𝜃3

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) 

… 

4. Sample 𝜃𝑘
𝑗
~𝑝(𝜃𝑘|𝜃1

𝑗
, 𝜃2

𝑗
, … , 𝜃𝑘−1

𝑗
, data) and return to step 1. 

As the univariate conditional densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data) fully characterize the joint pos-

terior density 𝑝(Θ|data), it can be proved, according to the Clifford-Hammersley theorem 

[Johannes and Polson, 2009], that the Markov Chain constructed according to the Gibbs 

Sampler converges to the joint posterior density 𝑝(Θ|data) as its equilibrium density. The 

distribution of the parameters and the latent state variables of the model can thus be esti-

mated by calculating enough iterations of the Gibbs Sampler, discarding the ones at the 

beginning, where the algorithm did not converge yet, and using the remaining ones as 

samples from the joint posterior distribution. The sample mean or median can then be used 

to estimate the model parameters and latent state variables, while the sample standard de-

viations can be used to estimate the Bayesian standard errors and test the parameter statis-

tical significance. 

The conditional densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data) necessarry for the Gibbs sampler construc-

tion are typically derived by applying the Bayes theorem to the likelihood function and the 

prior density. Specifically, the following proportionalle relationship can be utilized: 

 

with 𝐿(. ) denoting the likelihood function,  prior(. )the Bayesian prior density of the given 

parameter and ∝ the proportionalle relationship. If no prior information is available, the 

uninformative prior densities, prior(𝜃𝑖) ∝ 1, can be used for the prior.  

In order to derive the conditional density 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data) for the use in the Gibbs Sam-

pler, it is necessary to normalize the right-hand side of the equation 17, by dividing it with 

its integral over 𝜃1, corresponding to the density 𝑝(data|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

), thus replacing 

the proportionalle relationship with equality. 

Unfortunately, the integration of the right hand side of equation 17 over 𝜃1 may often be 

unfeasible in practice. In such cases the standard Gibbs sampler cannot be used. To con-

struct the MCMC chain it is therefore necessary to use either the so called Rejection Sam-

pling Gibbs Sampler or the Metropolis-Hastings algorithm. 

Metropolis-Hastings algorithm is a rejection sampling algorithm, sampling a proposal 

value of the given parameter (or a latent state) from a proposal density 𝑞, and then either 

accepting or rejecting it, based on a given probability, which leads us to effectively sam-

pling from the conditional density 𝑝. 

Specifically, to utilize the Metropolis-Hastings algorithm, Step 2 in the Gibbs Sampler 

algorithm has to be replaced by the following two step procedure: 

A. Sample 𝜃1
𝑗
 from a proposal density 𝑞(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) 

 𝑝(𝜃1|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data) ∝ 𝐿(data|𝜃1, 𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

) ∗ prior(𝜃1|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

) (17) 
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B. Accept 𝜃1
𝑗
 with probability 𝛼 = min (𝑅, 1), with 𝑅 denoting the so called ac-

ceptance ratio defined as: 

Which may in practice be evaluated by sampling 𝑢~𝑈(0,1) from an uniform 

distribution and accepting the value of 𝜃1
𝑗
 if and only if 𝑢 < 𝑅, otherwise the 

value of the parameter from the previous iteration 𝜃1
𝑗−1

 is kept instead. 

As in the case of the Gibbs Sampler algorithm, it can be shown that the so constructed 

Markov-chain converges to the joint posterior density 𝑝(Θ|data) as its equilibrium density 

[Johannes and Polson, 2009]. 

The computational efficiency of the Metropolis-Hastings algorithm does, however, signif-

icantly depend on the choice of the proposal density, which is established based on the 

specific version of the algorithm 

The most simple version of the Metropolis-Hastings algorithm is the Random-Walk Me-

tropolis-Hastings, in which the proposal density follows a Random Walk through the pa-

rameter space. The proposal 𝑞 is then defined as: 

 

With 𝑐 being the step-size meta-parameter which may influence the computational effi-

ciency of the algorithm and the practice is to set it so that approximately 50% of the pro-

posals get accepted and 50% rejected. 

A convenient property of the Random-Walk Metropolis-Hastings algorithm is that its pro-

posal distribution is symmetric, in the sense that the probability of going from 𝜃1
𝑗−1

 to 𝜃1
𝑗
 

is the same as the probability of going from 𝜃1
𝑗
 to 𝜃1

𝑗−1
 (which is not necessarily true for 

other types of proposal densities). This causes the terms corresponding to the proposal 

densities 𝑞 in the acceptance ratio to cancel out, so the acceptance ratio reduces to: 

 

It follows that as long as we are able to calculate the likelihood of the model, it is possible 

to utilize the Random-Walk Metropolis-Hasting algorithm to estimate the joint posterior 

density of the model parameters and latent states. 

The most time-consuming part of the SVJD model estimation is the sampling of the latent 

states of the stochastic variances. In our application, this is performed with the Accept-

Reject Gibbs Sampler algorithm developed by Kim, Shephard and Chib [1998]. As the 

 
𝑅 =

𝑝(𝜃1
𝑗
|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)𝑞(𝜃1

𝑗−1
|𝜃1

𝑗
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)

𝑝(𝜃1
𝑗−1

|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data)𝑞(𝜃1
𝑗
|𝜃1

𝑗−1
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)

 (18) 

 𝜃1
𝑗
~𝜃1

𝑗−1
+ 𝑁(0, 𝑐) (19) 

 
𝑅 =

𝐿(data|𝜃1
𝑗
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
)

𝐿(data|𝜃1
𝑗−1

, 𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

)
 (20) 
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conditional distribution of the stochastic variances 𝑝(𝑉𝑖|𝑽(−𝒊), Θ, 𝐫, 𝐉, 𝐙) cannot be analyt-

ically expressed and sampled from, the authors propose to use a proposal distribution 𝑞, 

whose density is at all points above the target density 𝑝. The Accept-Reject Gibbs Sampler 

does then sample in each sampling step repeatedly from 𝑞, with the proposal being ac-

cepted with an acceptance ratio equal to the ratio of the two densities 𝑞/𝑝 at the point of 

the proposal. This has the effect of effectively sampling from the target density 𝑝, with the 

drawback that in every step multiple proposals may have to be sampled from 𝑞, until one 

of them eventually gets accepted. 

For the overall proceeding of the algorithm, we are estimating a few model parameters Θ 

and a large number of latent state variables X. Since we know from the Bayes theorem that: 

 

We can estimate iteratively the parameters and the latent states as follows: 

 

In the employed MCMC algorithm for the SVJD-RV-Z model estimation (i.e. the most 

complex one out of the proposed models), we have to estimate 13 model parameters 

(𝜇, 𝜇𝐽, 𝜎𝐽, 𝛼, 𝛽, 𝛾, 𝛼𝐽, 𝛽𝐽, 𝛾𝐽, 𝜎𝑅𝑉 , 𝜇𝑍, 𝜉𝑍, 𝜎𝑍) and 3 vectors of latent state variables (𝑽, 𝑱, 𝑸). 

The algorithm was developed in Fičura and Witzany [2015] and is based on earlier results 

from Witzany [2013] and is based on the methodology developed in Jacquier et al. [2007] 

and Johannes and Polson [2009]. The MCMC algorithms for SVJD and SVJD-RV proceed 

in the same fashion, with slight modifications and some of the steps missing. 

The algorithm for SVJD-RV-Z proceeds as follows: 

1. Sample initial values of the model latent state variables 𝑽(0), 𝑱(0), 𝑸(0) and pa-

rameters 𝜇(0), 𝜇𝐽
(0)

, 𝜎𝐽
(0)

, 𝛼(0), 𝛽(0), 𝛾(0), 𝛼𝐽
(0)

, 𝛽𝐽
(0)

, 𝛾𝐽
(0)

, 𝜎𝑅𝑉
(0)

, 𝜇𝑍
(0)

, 𝜉𝑍
(0)

, 𝜎𝑍
(0)

. 

2. For 𝑖 = 1,… , 𝑇 sample the jump sizes 𝐽𝑖
(𝑔)

∝ 𝜑 (𝐽; 𝜇𝐽
(𝑔−1)

, 𝜎𝐽
(𝑔−1)

) if  𝑄𝑖
(𝑔)

= 0 

using the Gibbs Sampler, or if 𝑄𝑖
(𝑔−1)

= 1, use the Random-Walk Metropolis-

Hastings to sample from: 

 𝐽𝑖
(𝑔)

∝ 𝜑 (𝑟𝑖; 𝜇
(𝑔−1) + 𝐽,√𝑉𝑖

(𝑔−1)
)𝜑(𝑙𝑜𝑔(𝑅𝑉𝑖 − 𝐽2); ℎ𝑖

(𝑔−1)
, 𝜎𝑅𝑉

(𝑔−1)
)𝜑(𝐽; 𝜇𝐽

(𝑔−1)
, 𝜎𝐽

(𝑔−1)
) 

3. For 𝑖 = 1,… , 𝑇 sample the jump occurrences 𝑄𝑖
(𝑔)

∈ {0,1}, using the expression 

Pr[𝑄 = 1] = 𝑝1/(𝑝0 + 𝑝1), where: 

𝑝0 = 𝜑 (𝑟𝑖; 𝜇
(𝑔−1), √𝑉𝑖

(𝑔−1)
)𝜑(log(𝑅𝑉𝑖); ℎ𝑖

(𝑔−1)
, 𝜎𝑅𝑉

(𝑔−1)
)𝜑(𝑍𝑖; 𝜇𝑍

(𝑔−1)
, 𝜎𝑍

(𝑔−1)
)(1 − 𝜆𝑖

(𝑔−1)
) 

𝑝1 = 𝜑 (𝑟𝑖; 𝜇
(𝑔−1) + 𝐽𝑖

(𝑔)
, √𝑉𝑖

(𝑔−1)
)𝜑 (log (𝑅𝑉𝑖 − (𝐽𝑖

(𝑔)
)
2
) ; ℎ𝑖

(𝑔−1)
, 𝜎𝑅𝑉

(𝑔−1)
)𝜑(𝑍𝑖; 𝜇𝑍

(𝑔−1)
+ 𝜉𝑍

(𝑔−1)
, 𝜎𝑍

(𝑔−1)
)𝜆𝑖

(𝑔−1)
 

4. Sample new stochastic log-variances ℎ𝑖
(𝑔)

= log (𝑉𝑖
(𝑔)

) for 𝑖 = 1,… , 𝑇 using the 

Gibbs Sampler with accept-reject procedure developed by Kim, Shephard and 

 𝑝(Θ, X|data) ∝ 𝑝(data|Θ, X) ∗ 𝑝(X, Θ) (21) 

 𝑝(Θ|X, data) ∝ 𝑝(data|Θ, X) ∗ 𝑝(X|Θ) ∗ 𝑝(Θ) 

𝑝(X|Θ, data) ∝ 𝑝(data|Θ, X) ∗ 𝑝(Θ|X) ∗ 𝑝(X) 
(22) 
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Chib [1998], i.e. first calculate the series 𝑦𝑖 = 𝑟𝑖 − 𝜇(𝑔−1) − 𝐽𝑖
(𝑔)

𝑄𝑖
(𝑔)

 and then 

sample ℎ𝑖
(𝑔)

 from the proposal distribution 𝜑(ℎ𝑖; 𝜇𝑖 , 𝜎), where: 

𝜇𝑖 = 𝜙𝑖 +
𝜎2

2
[𝑦𝑖

2 exp(−𝜙𝑖) − 1], 

𝜙𝑖 =
𝛾2log(𝑅𝑉𝑖 − 𝐽𝑖

2𝑄𝑖) + 𝜎𝑅𝑉
2 [𝛼(1 − 𝛽) + 𝛽(log𝑉𝑖+1 + log𝑉𝑖−1)]

𝛾2 + (1 + 𝛽2)𝜎𝑅𝑉
2 , 

𝜎 =
𝛾𝜎𝑅𝑉

√𝛾2 + (1 + 𝛽2)𝜎𝑅𝑉
2

 

The proposal is accepted with probability 𝑓∗ 𝑔∗⁄ , where: 

log(𝑓∗) = −
ℎ𝑖

2
−

𝑦𝑖
2

2
[exp (−ℎ𝑖)] 

log(𝑔∗) = −
ℎ𝑖

2
−

𝑦𝑖
2

2
[exp(−𝜙𝑖) (1 + 𝜙𝑖) − ℎ𝑖 exp(−𝜙𝑖)] 

If no accepted, then another proposal is drawn until acceptance occurs. 

5. Sample new stochastic log-variance autoregression coefficients 𝛼(𝑔), 𝛽(𝑔), 𝛾(𝑔), 

denoting ℎ𝑖 = log (𝑉𝑖
(𝑔)

) for 𝑖 = 1,… , 𝑇, using the Bayesian linear regression 

model [Lynch, 2007], i.e. define �̂� = (𝑿′𝑿)−1𝑿𝒚 and �̂� = 𝒚 − 𝑿�̂�, where 

𝑿 = (
1  …    1   
ℎ1 …ℎ𝑇−1

)
′

 and 𝒚 = (ℎ2 …ℎ𝑇)′, and sample: 

(𝛾(𝑔))
2

∝ 𝐼𝐺 (
𝑛 − 2

2
,
�̂�′�̂�

2
), 

(𝛼(𝑔), 𝛽(𝑔))
′
∝ 𝜑 [(𝛼, 𝛽)′; �̂�, (𝛾(𝑔))

2
(𝑿′𝑿)−1] 

6. Sample 𝜇(𝑔) based on the normally distributed time series 𝑟𝑖 − 𝐽𝑖
(𝑔)

𝑄𝑖
(𝑔)

 with 

variances 𝑉𝑖
(𝑔)

 as follows: 

𝑝(𝜇(𝑔)|𝒓, 𝑱(𝑔), 𝑸(𝑔), 𝑽(𝑔)) ∝ 𝜑 (𝜇;∑
𝑟𝑖 − 𝐽𝑖

(𝑔)
𝑄𝑖

(𝑔)

𝑉𝑖
(𝑔)

𝑇

𝑖=1

∑
1

𝑉𝑖
(𝑔)

𝑇

𝑖=1

⁄ ,∑
1

𝑉𝑖
(𝑔)

𝑇

𝑖=1

) 

7. Sample the Hawkes process parameters 𝜃𝐽, 𝛽𝐽 , 𝛾𝐽, using the Random-Walk Me-

tropolis-Hastings algorithm with the proposal densities given as: 

𝜃𝐽
(𝑔)

= 𝜃𝐽
(𝑔−1)

+ 𝑁(0, 𝑐), 

𝛽𝐽
(𝑔)

= 𝛽𝐽
(𝑔−1)

+ 𝑁(0, 𝑐), 

𝛾𝐽
(𝑔)

= 𝛾𝐽
(𝑔−1)

+ 𝑁(0, 𝑐), 

and the likelihood function equal to 𝐿(𝑸(𝑔)|𝜃𝐽, 𝛽𝐽 , 𝛾𝐽) = ∏ 𝜆𝑖
𝑄𝑖(1 − 𝜆𝑖)

1−𝑄𝑖𝑇
𝑖=1 . 

8. Sample 𝜇𝐽
(𝑔)

, 𝜎𝐽
(𝑔)

 based on the normally distributed time series 𝑱(𝑔) and unin-

formative priors 𝑝(𝜇) ∝ 1 and 𝑝(log𝜎2) ∝ 1,  equivalent to 𝑝(𝜎2) ∝ 1/𝜎2: 

𝑝 (𝜇𝐽
(𝑔)

|𝑱(𝑔), 𝜎𝐽
(𝑔−1)

) ∝ 𝜑 (𝜇𝐽
(𝑔)

;
∑ 𝐽𝑖

(𝑔)𝑇
𝑖=1

𝑇
,
𝜎𝐽

(𝑔−1)

√𝑇
) 
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𝑝 [(𝜎𝐽
(𝑔)

)
2
|𝑱(𝑔), 𝜇𝐽

(𝑔)
] ∝ 𝐼𝐺 [(𝜎𝐽

(𝑔)
)
2
;
𝑇

2
,
∑ (𝐽𝑖

(𝑔)
− 𝜇𝐽

(𝑔)
)
2

𝑇
𝑖=1

2
] 

9. Sample 𝜎𝑅𝑉
(𝑔)

 using the Inverse Gamma density: 

𝑝 [(𝜎𝑅𝑉
(𝑔)

)
2
|𝑹𝑽, 𝑱(𝑔), 𝑸(𝑔), 𝑽(𝑔)] ∝ 𝐼𝐺

[
 
 
 

(𝜎𝑅𝑉
(𝑔)

)
2
;
𝑇

2
,
∑ (log (𝑅𝑉𝑖 − (𝐽𝑖

(𝑔)
)
2
𝑄𝑖

(𝑔)
) − ℎ𝑖

(𝑔)
)
2

𝑇
𝑖=1

2

]
 
 
 

 

10. Sample 𝜇𝑍
(𝑔)

, 𝜉𝑍
(𝑔)

, 𝜎𝑍
(𝑔)

 using the normally distributed series 𝑍𝑖 − 𝑄𝑖
(𝑔)

𝜉𝑍
(𝑔−1)

, 

with variance 𝜎𝑍
(𝑔−1)

 to sample 𝜇𝑍
(𝑔)

, series 𝑄𝑖
(𝑔)

(𝑍𝑖 − 𝜇𝑍
(𝑔)

), at points where 

𝑄𝑖
(𝑔)

= 1, with variance 𝜎𝑍
(𝑔−1)

, to sample 𝜉𝑍
(𝑔)

, and the centralized time series 

𝑍𝑖 − 𝜇𝑍
(𝑔)

− 𝑄𝑖
(𝑔)

𝜉𝑍
(𝑔)

 to sample 𝜎𝑍
(𝑔)

 using the Inverse Gamma distribution. 

The implementation of the MCMC algorithm used for the estimation of the SVJD-RV-Z 

model in Matlab can be found in the Appendix. 

The MCMC algorithm enables us to estimate the posterior distribution of the model pa-

rameters and latent state variables conditional on the full data sample. Specifically, for a 

time series of length 𝑇, we are estimating the distribution of model parameters and latent 

sate variables 𝑝(Θ, X|ℱ𝑇), conditional on the filtration ℱ𝑇, denoting the available infor-

mation up until time 𝑇 (i.e. the full time series). While this may be useful in order to fit the 

model to the data, it is impractical in the case of forecasting and especially in the case of 

back-testing of the models out-of-sample forecasts of volatility and jumps, as it would 

require the re-estimation of the MCMC algorithm for each time point in the past, in order 

to get the parameter and latent state estimates as they were available at the given time point 

(i.e. conditional on the observable information ℱ𝑡, with 𝑡 = 1,…𝑇). 

As this would be too time-consuming, a common approach is to combine the MCMC al-

gorithm with Particle Filters [Fulop, Li and Yu, 2015], with the MCMC used in order to 

estimate the model parameters and latent state variables in the in-sample period, while the 

Particle Filters are used to sequentially estimate the evolution of the latent state variables 

in the out-sample period, conditional on the parameters estimated in the in-sample period, 

and the filtrations ℱ𝑡 at every time point in the out-sample part of the time series. 

Particle Filters (also known as Sequential Monte-Carlo algorithm) are Bayesian estima-

tion methods, using a weighted set of particles, together with Bayesian recursion equations, 

in order to sequentially estimate the posterior densities of the latent state variables of an 

econometric model for each time-point in the time series, conditional on the observable 

information up to the given time-point.  

Specifically, assuming that we have an observable series 𝑦𝑡 of a length 𝑇, governed by a 

set of known model parameters Θ and a latent state time series 𝑥𝑡, the MCMC algorithm 

estimates for each time point 𝑡 the posterior distribution of the corresponding latent state 

𝑝(𝑥𝑡|ℱ𝑇 , Θ), with ℱ𝑇 denoting the filtration (i.e. available information about the evolution 

of 𝑦𝑡) up until the end of the dataset 𝑇. The Particle Filter algorithm, on the other hand, 
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estimates for each time point 𝑡 the posterior distribution 𝑝(𝑥𝑡|ℱ𝑡, Θ), which is conditional 

only on the observable information up until the time 𝑡. 

The Particle Filter represents each distribution 𝑝(𝑥𝑡|ℱ𝑡) with a weighted set of particles, 

which can then be used, together with the model parameters Θ, to estimate the distributions 

𝑝(𝑥𝑡+1|ℱ𝑡), 𝑝(𝑥𝑡+2|ℱ𝑡) via simulations of the future evolution of the latent state variables. 

In our study, we first estimate the model parameters Θ and the in-sample evolution of the 

latent state variables on the in-sample period with an MCMC algorithm, and then use these 

estimates to initialize and run a Sequential Importance Resampling (SIR) Particle Filter to 

sequentially estimate the evolution of the latent state variables in the out-sample period. 

To define the SIR Particle Filter, we use an illustrative example with 𝑦𝑡 denoting observa-

tions of the observable time series and 𝑥𝑡 the observations of the latent time series, that is 

governing the dynamics 𝑦𝑡. The purpose of the SIR Particle Filter is to estimate the poste-

rior distribution of 𝑥𝑡 at each time point, conditional on the evolution of 𝑥𝑡 up to that time 

point and the known parameters of the model Θ. 

To estimate the posterior distribution of 𝑥𝑡 at each time point 𝑡, the SIR Particle Filter uses 

a set of 𝐿 = 1,… , 𝑃 weighted particles x𝑡
(𝐿)

, each of them representing one possible path 

of 𝑥𝑡. Bayesian recursion equations are then used to adjust the weights of the particles 𝑤𝑡
(𝐿)

 

in order to represent the posterior distribution 𝑝(𝑥𝑡|𝑦0, … , 𝑦𝑡). The values of the particles 

𝑥𝑡
(𝐿)

 and their weights 𝑤𝑡
(𝐿)

 can then be used to approximate the expectation of any desired 

function of 𝑥𝑡 (such as mean, median or standard deviation), as follows: 

 

The SIR Particle Filter introduces a re-sampling phase into the Particle Filter algorithm in 

order to avoid the problem of degeneracy of the particles, which is a situation in which all 

of the weights become very close to zero except for one.  

The SIR Particle Filter algorithm proceeds as follows: 

1. For 𝐿 = 1,… , 𝑃 particles draw samples from the proposal density 

𝑥𝑡
(𝐿)

~𝜋(𝑥𝑡|𝑥0:𝑡−1
(𝐿)

, 𝑦0:𝑡) 

2. For 𝐿 = 1,… , 𝑃 update the importance weights up to a normalizing constant ac-

cording to: 

A common approach is to use proposal density equal to the conditional density 

of 𝑥𝑡, in this case  𝜋 (𝑥𝑡
(𝐿)

|𝑥0:𝑡−1
(𝐿)

, 𝑦0:𝑡) = 𝑝 (𝑥𝑡
(𝐿)

|𝑥𝑡−1
(𝐿)

), the weight updating 

equation simplifies then to:  

 

∫ 𝑓(𝑥𝑡)𝑝(𝑥𝑡|𝑦0, … , 𝑦𝑡)𝑑𝑥𝑡

∞

−∞

≈ ∑𝑥𝑡
(𝑖)

𝑓 (𝑥𝑡
(𝑖)

)

𝑃

𝑖=1

 (23) 

 

𝑤𝑡
∗(𝐿)

= 𝑤𝑡−1
(𝐿)

𝑝 (𝑦𝑡|𝑥𝑡
(𝐿)

) 𝑝 (𝑥𝑡
(𝐿)

|𝑥𝑡−1
(𝐿)

)

𝜋 (𝑥𝑡
(𝐿)

|𝑥0:𝑡−1
(𝐿)

, 𝑦0:𝑡)
 (24) 
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Where 𝑝 (𝑦𝑡|𝑥𝑡
(𝐿)

) corresponds to the likelihood of 𝑦𝑡 conditional on 𝑥𝑡
(𝐿)

 

3. For 𝐿 = 1,… , 𝑃 compute the normalized weights: 𝑤𝑡
(𝐿)

=
𝑤𝑡

∗(𝐿)

∑ 𝑤𝑡
∗(𝐽)𝑃

𝐽=1

 

4. Compute effective number of particles: 𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
(𝐽)

)
2

𝑃
𝐽=1

 

5. If 𝑁𝑒𝑓𝑓 < 𝑁𝑡ℎ𝑟 then resample the particles with probabilities proportional to 

their weights and for 𝐿 = 1,… , 𝑃 set 𝑤𝑡
(𝐿)

= 1 𝑃⁄  

In our case, the observable time series are the past returns 𝑟(𝑡) and the past realized vari-

ances RV(𝑡) and values of the Z-Statistics 𝑍(𝑡), in the case of the SVJD-RV and SVJD-

RV-Z models respectively. The unobservable time series are the stochastic log-variances 

ℎ(𝑡) (or stochastic variances V(𝑡) alternatively), the jump occurrences 𝑄(𝑡) and the jump 

sizes 𝐽(𝑡). The jump intensities λ(𝑡), although also latent, do not need to be estimated 

separately, as they deterministically depend on the past jump occurrences 𝑄(𝑡).  

1.5 Simulation study of the in-sample model fit 

A simulation study is performed, in order to assess the ability of the SVJD, SVJD-RV and 

SVJD-RV-Z models to estimate stochastic volatility and jumps in simulated time series 

with different jump magnitudes. The accuracy of the model estimates is then compared 

with the accuracy of the non-parametric estimators of integrated variance (using the EIV 

estimator) and jumps (using the Z-Estimator). 

First, high-frequency (15-minute) time series are simulated with different values of the 𝜎𝐽 

parameter determining the absolute size of the simulated jumps. Daily returns and daily 

values of the power-variation estimators are computed from the simulated time series and 

the SVJD, SVJD-RV and SVJD-RV-Z models are estimated on them, using the MCMC 

algorithm described in the previous section.  

The model estimates of latent stochastic variances are then compared with the daily inte-

grated variances derived from the simulations and the model latent state time series of jump 

occurrences are compared with the jump occurrences in the simulations. The accuracy of 

the model estimates is then compared with the accuracy of the non-parametric estimators 

of the integrated variances (EIV) and jumps (Z-Estimator). 

In order to assess, how well do the estimated stochastic variances 𝐸(𝑉𝑖|𝑚𝑜𝑑𝑒𝑙) fit to the 

daily integrated variances from the simulations, the R-Squared criterion is used. 

To assess the ability of the models to identify jumps in the simulated time series, the Ac-

curacy Ratio (Gini Coefficient) is applied to the daily time series of estimated jump occur-

rences and the daily time series of jumps  computed from the simulations by assuming that 

as long as at least one jump occurred during the given day, the value of 𝑄𝑖 = 1. 

 𝑤𝑡
∗(𝐿)

= 𝑤𝑡−1
(𝐿)

𝑝 (𝑦𝑡|𝑥𝑡
(𝐿)

) (25) 
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To define the Accuracy Ratio (AR), we have to first define 𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 as the probability of a 

successful discrimination, defined in a sense that if 𝑄𝑖,𝐽𝑢𝑚𝑝 denotes a random day at which 

a jump occurred and 𝑄𝑗,𝑁𝑜𝐽𝑢𝑚𝑝 a random day at which no jump occurred,  𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 repre-

sents the probability that 𝐸(𝑄𝑖|𝑚𝑜𝑑𝑒𝑙) > 𝐸(𝑄𝑗|𝑚𝑜𝑑𝑒𝑙), with 𝐸(𝑄𝑖|𝑚𝑜𝑑𝑒𝑙) denoting the 

probability of jump occurrence assigned by the model to day 𝑄𝑖,𝐽𝑢𝑚𝑝 and 𝐸(Q𝑗|𝑚𝑜𝑑𝑒𝑙)  

the probability of jump occurrence assigned by the model to day 𝑄𝑗,𝑁𝑜𝐽𝑢𝑚𝑝. Similarly, we 

define 𝑝𝑓𝑎𝑖𝑙 as the probability, that for two randomly chosen days 𝑄𝑖,𝐽𝑢𝑚𝑝 and 𝑄𝑗,𝑁𝑜𝐽𝑢𝑚𝑝, 

defined as above, the opposite holds, i.e. (𝑄𝑖|𝑚𝑜𝑑𝑒𝑙) < 𝐸(𝑄𝑗|𝑚𝑜𝑑𝑒𝑙).  

Using the above probabilities  𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑝𝑓𝑎𝑖𝑙, it is possible to calculate the Accuracy 

Ratio (AR) as follows: 

 

In the performed study, altogether 8 high-frequency (15-minute) time series of 5000 days 

(480 000 15-minute periods) are simulated, with the value of 𝜎𝐽 varying in the simulations 

between 𝜎𝐽 = 0.0025 and 𝜎𝐽 = 0.02 (with the increment of 0.0025), so that the average 

absolute jump size ranges from 0.25% to 2%.  

The rest of the parameters used in the simulation was set to empirically realistic values, as 

estimated as in the study of Fičura and Witzany [2015] in which a SVJD model was fitted 

to the EUR/USD time series. The parameters are shown in Table 1: 

 

Table 1 | Parameters of the SVJD model used in the simulation study  

  mui muiJ sigmaJ alpha beta gamma lambdaLT betaJ gammaJ 

Parameter 0.0001 0.0000 x -0.0475 0.9954 0.0686 0.0205 0.4414 0.0423 

 

The muiJ parameter was set to zero, so that the jumps have a zero mean, and the sigmaJ 

parameter varies between 0.0025 and 0.02 as mentioned above. 

The simulated daily returns and stochastic variances (or more specifically integrated vari-

ances, as they were aggregated to the daily frequency) for 4 of the simulated time series 

(with sigmaJ alternatively 0.5%, 1%, 1.5% and 2%), are shown on Figure 1 and Figure 2. 

Figure 3 does then shows the daily realized variances computed from the simulated 15-

minute returns. 

As can be seen from Figure 1, the simulated stochastic variances (daily integrated vari-

ances) exhibit long-term clustering, which is caused by the high value of the beta parameter 

used in simulations (beta=0.995), which is typical for the empirically observed financial 

time series. The magnitude of the simulated returns on Figure 1 does clearly correspond to 

the simulated variances on Figure 2. The presence of jumps in the simulations is apparent 

in the return plot (Figure 1) and even more clearly in the realized variance plot (Figure 3), 

especially in the case of the higher values of sigmaJ. 

  

 𝐴𝑅 = 𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 − 𝑝𝑓𝑎𝑖𝑙 (26) 
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Figure 1 | Daily logarithmic returns of the simulated time series 

 

Figure 2 | Daily integrated variances of the simulated time series 
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Figure 3 | Daily realized variances of the simulated time series 

 

From the 8 simulated time series of intraday returns, we first computed the daily returns, 

realized variances and the values of the Z-Statistics for every day. These were then used to 

estimate the SVJD, SVJD-RV and SVJD-RV-Z models, by using a MCMC algorithm with 

5 000 iterations, with the first 2 000 discarded and the remaining 3 000 used for parameter 

and latent state estimation based on the posterior means. 

By calculating the posterior means of the estimated latent time series of jump occurrences 

𝑄𝑡, we get Bayesian estimates of the probabilities of jump occurrence for every day in the 

time series [Witzany, 2013]. These are then compared with the daily jump occurrences 

derived from the simulations and Accuracy Ratios of the estimates are computed.  

The results are shown in Table 2, with the first 3 columns corresponding to the Accuracy 

Ratios of the Bayesian jump estimates of the 3 parametric models (SVJD, SVJD-RV and 

SVJD-RV-Z), while the last column measures the accuracy of the non-parametric jump 

estimates constructed by applying the Gaussian cumulative distribution function to the val-

ues of the Z-Estimator. 
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Table 2 | Accuracy ratios of the jump estimates of the models, when applied to simu-

lated time series with different values of SigmaJ 

SigmaJ SVJD SVJD-RV SVJD-RV-Z Z-Est 

0.0025 0.0195 0.4757 0.2409 0.3166 

0.005 0.2300 0.6622 0.4528 0.5643 

0.0075 0.3292 0.7757 0.6135 0.7295 

0.01 0.4697 0.8250 0.6860 0.7927 

0.0125 0.5274 0.8476 0.7728 0.8341 

0.015 0.5905 0.9353 0.7931 0.8860 

0.0175 0.5633 0.8131 0.7199 0.8566 

0.02 0.6394 0.8686 0.7550 0.8403 

 

We can see from the results in Table 2, that the most accurate jump estimates were in most 

of the simulations achieved by the SVJD-RV model, which outperformed both, the SVJD-

RV-Z model as well as the non-parametric Z-Estimator based approach. The worse perfor-

mance of the SVJD-RV-Z model can be explained by the fact that the employed approach 

divides the jumps in the time series into “small jumps” and “large jumps”, with the latent 

time series estimated by the model modelling only the “large jumps” (i.e. the ones having 

an impact on the overall daily returns), which might have influenced the results for this 

model. The ability of the SVJD-RV model to outperform the Z-Estimator approach is, 

however, unexpected and represents a potentially interesting result for practical applica-

tions as the Z-Estimator is commonly used in practice as benchmark. Finally, the SVJD 

model proved to be the least accurate for jump identification, which is to be expected, as 

it is the only model that does not use the information from the intraday data. 

Table 3 shows the accuracy of the daily stochastic variance (integrated variance) estimates 

of the models, measured with the R-Squared statistics. The last column does in this case 

correspond to the accuracy of the non-parametric EIT estimator of integrated variance, 

defined as in equation 11, with the confidence level alpha equal to 0.95. 

 

Table 3 | R-Squared of the integrated variance estimates of the models, when applied 

to simulated time series with different values of SigmaJ 

SigmaJ SVJD SVJD-RV SVJD-RV-Z EIV 

0.0025 0.8547 0.9886 0.9887 0.9516 

0.005 0.8197 0.9830 0.9831 0.9152 

0.0075 0.8206 0.9860 0.9859 0.9266 

0.01 0.8865 0.9898 0.9899 0.9435 

0.0125 0.8094 0.9843 0.9839 0.9066 

0.015 0.8681 0.9849 0.9846 0.9087 

0.0175 0.8201 0.9831 0.9840 0.9145 

0.02 0.8535 0.9844 0.9845 0.8702 

Electronic copy available at: https://ssrn.com/abstract=3212975



 Electronic copy available at: https://ssrn.com/abstract=3212975 

 

 

20 

 

In Table 3 we can see the accuracy of the model integrated variance estimates, measured 

by the R-Squared criterion. As we can see, the accuracy of the SVJD-RV and SVJD-RV-

Z models is comparable in this case and it is also in general higher than of the SVJD model 

and even of the non-parametric EIV based approach. This is again an important result as it 

shows that the SJVD models extended with the power-variation estimators, do provide 

more accurate estimates of the underlying stochastic variance than the purely non-para-

metric approach that is often used in practice. Additionally, we can see that while the ac-

curacy of the EIV based approach drops with the increasing value of SigmaJ, no significant 

drop can be observed for the parametric models, indicating that they handle the jump com-

ponent in the data better than the non-parametric method. The standard SVJD model, esti-

mated on daily returns, did again achieve the lowest accuracy out of the tested models, 

which could be expected as it does not use the additional information contained in the 

intraday returns. 

1.6 Empirical application to foreign exchange 

In the performed empirical study, we apply the presented SVJD, SVJD-RV and SVJD-

RV-Z models to the time series of 4 major foreign exchange rates, namely to EUR/USD, 

GBP/USD, USD/CHF and USD/JPY, with the dataset ranging from 1.11.1999 to 

15.6.2015, containing altogether 4 072 daily observations.  

In the first part of the analysis, the models are estimated on the full data sample, using the 

MCMC method, in order to assess the properties of the stochastic variances and jumps 

estimated with the 3 tested models.  

In the second part of the analysis, out-of-sample predictive power of the models is evalu-

ated, by first estimating them on the first 2 000 days of the time series (in-sample period 

ranging from 1.11.1999 to 3.7.2007), followed with a sequential estimation of the latent 

state variables evolution over the out-sample period (4.7.2007 to 15.6.2015), using the SIR 

Particle Filter algorithm. At each time point, forecasts of the 1-day, 5-day and 20-day ahead 

quadratic variations are calculated and compared with the future realized variances, in or-

der to assess the model predictive power. The realized variances are in this case used as a 

proxy of the future quadratic variations as we cannot observe them directly from the data. 

The realized variance and Z-Estimator time series for the estimation of the SVJD-RV and 

SVJD-RV-Z model, and finally for the forecast accuracy assessment, were calculated from 

the intraday 15-minute return time series, provided by Forexhistorydatabase.com.  

All of the calculations (MCMC and Particle Filters) were performed in Matlab, with the 

major scripts (for the MCMC and the SIR Particle Filter corresponding to the SVJD-RV-

Z model) available in the Appendix. 
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1.6.1  Full-Sample Analysis 

The SVJD, SVJD-RV and SVJD-RV-Z models were applied to the daily return time series 

of EUR/USD, GBP/USD, USD/CHF and USD/JPY over the history ranging from 

1.11.1999 to 15.6.2015. 

Figure 4 shows the evolution of the prices of the 4 analysed currency exchange rates. Fig-

ure 5 shows the evolution of their logarithmic returns, Figure 6 shows the evolution of the 

realized variances and Figure 7 shows the evolution of the Z-Statistic (with both, the real-

ized variances and the Z-Statistic calculated from 15-minute returns). 

It is apparent from the return plot (Figure 5) and the realize variance plot (Figure 6) that 

the exchange rates exhibit time varying volatility with long-term volatility clusters, espe-

cially around the crisis period of 2009. Large values of the Z-Statistics (i.e. significantly 

larger than zero) do further indicate that the analysed time series contain large number of 

jumps, with the most prominent ones being visible even on the daily return and realized 

variance plots (especially the jump associated with the end of the monetary interventions 

of the Swiss central banks that happened in 2015 in the USD/CHF exchange rate), while 

most of the small jumps (i.e. the values of the Z-Statistics significantly larger than zero) 

cannot be directly observed from the return and realized variance plots as they are lost in 

the overall price variability. 

In the next step, a MCMC algorithm with 5 000 iterations was used to fit the SVJD, SVJD-

RV and SVJD-RV-Z models to the observed time series (of returns, realized variances and 

the Z-Statistics), with the first 2 000 iterations discarded (as the algorithm might have not 

converged to the posterior distribution yet) and the remaining ones then used for the model 

parameter and latent state estimation based on the posterior means, as well as for the pa-

rameter standard error estimation based on the posterior standard deviations. 

Convergence of the MCMC algorithm for selected parameters of the SVJD-RV-Z model, 

when applied to the EUR/USD exchange rate, is shown on the Figure 8 (muiJ, sigmaJ, 

alpha and beta), Figure 9 (gamma, lambdaLT, betaJ and gammaJ) and Figure 10 (sig-

maRV, muiZ, ksiZ and sigmaZ). The lambdaLT is in this case equal to the thetaJ parameter 

in the previous section and corresponds to the long-term jump intensity. 

We can see from the plots, that most of the parameters converged rather quickly to the joint 

posterior distribution, within the first several hundred iterations (as is apparent for example 

from the gamma parameter of the log-variance process). 

The convergence is less clear only for the betaJ parameter of the Hawkes process deter-

mining the rate of decay of the jump intensities. Nevertheless, when a histogram is com-

puted from the betaJ parameter values over the last iterations, it has a significant mode in 

the upper region of the parameter space, indicating a convergence (although with a strong 

left-tail of the posterior distribution, indicating a potentially low statistical significance of 

the estimate, as will be further seen from the parameter standard errors). 
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Figure 4 | Evolution of the daily price of the 4 analysed foreign exchange rates 

 

Figure 5 | Evolution of the daily returns of the 4 analysed foreign exchange rates 
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Figure 6 | Evolution of the realized variance of the 4 analysed foreign exchange rates 

 

Figure 7 | Evolution of the Z-Estimator of the 4 analysed foreign exchange rates 
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Figure 8 | Convergence of the MCMC algorithm for the SVJD-RV-Z model (EUR/USD) 

 

Figure 9 | Convergence of the MCMC algorithm for the SVJD-RV-Z model (EUR/USD) 
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Figure 10 | Convergence of the MCMC algorithm for the SVJD-RV-Z model (EUR/USD) 

 

The final MCMC parameter estimates (based on the posterior means) and the Bayesian 

standard errors (based on the posterior standard deviations) for the tested models (SVJD, 

SVJD-RV and SVJD-RV-Z), applied to the 4 analysed currencies, are shown in Table 4 

(EUR/USD), Table 5 (GBP/USD), Table 6 (USD/CHF) and Table 7 (USD/JPY).  

The evolution of the estimated latent state variable time series (i.e. of the stochastic vari-

ances and of the Bayesian jump probabilities of occurrence, computed as an average of the 

jumps occurrences in the MCMC iterations) is then depicted on Figures 11-18. 

From the parameter estimates in the Tables 5-7, we can see that in all of the cases is the 

value of beta, determining the log-variance process persistence, very close to one, indicat-

ing a highly persistent process. At the same time is the beta in all of the cases significantly 

(i.e. more than two standard errors) lower than one, indicating that the log-variance process 

is still stationary (although highly persistent). 

The value of sigmaJ, determining the jump magnitude, was generally estimated to be far 

higher for the SVJD and SVJD-RV models than in the case of the SVJD-RV-Z model. This 

is to be expected, as the SVJD-RV-Z uses the additional information from the Z-Statistics 

in the jump estimation, enabling it to pick even the smaller jumps in the time series, which 

the other two models (using only the information from the daily returns and realized vari-

ances) cannot distinguish from the continuous volatility component. 

The lower values of sigmaJ in the case of the SVJD-RV-Z model (compared to the other 

models) coincide with its much higher values of the lambdaLT parameter (i.e. the thetaJ), 

representing the mean long-term jump intensity. The SVJD-RV-Z model does thus seem 
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to identify larger number of jumps in the time series than the other two models, due to its 

utilization of the Z-Statistics, which enables it to pick also the smaller jumps, that the other 

two models cannot identify. 

The estimated parameters of the Hawkes process (betaJ and gammaJ) show that most of 

the time series (and models) do not exhibit statistically significant jump clustering, as the 

value of gammaJ, representing the degree of jump self-excitation (i.e. how much the jump 

intensity increases in the day following a jump occurrence) is in most of the cases less than 

2 standard errors away from one and thus statistically insignificant. 

An exception can be seen in the estimates of the SVJD-RV model for the CHF/USD time 

series for which the gammaJ is statistically significant, but betaJ is not, indicating a co-

jump behaviour, when a jump occurrence increases the probability of an additional jump 

in the following day, but not so much in the days afterwards. A similar co-jump behaviour 

can be observed also for the SVJD-RV model applied to the JPY/USD, although with a 

lesser statistical significance. 

A more persistent jump clustering (although with a relatively weak statistical significance 

of the gammaJ) can be observed for the SVJD-RV-Z model and the GBP/USD and 

EUR/USD currencies, for which is the betaJ parameter significant. Nevertheless, even in 

these cases is the value of betaJ much smaller than one, indicating a rather low duration of 

the clustering effect, lasting for at most a few days. 

In the case of the SVJD-RV-Z model, we can further observe that the value of muiZ was 

in all of the cases estimated as significantly larger than zero (usually around 1), indicating 

a presence of small jumps in the high-frequency time series of the returns, which shift the 

value of the Z-Statistics upwards (compared to the no-jump case of 0). The large jumps, 

having an impact on the daily returns, do then further increase the values of the Z-Statistics 

by additional 3-4 points, as can be seen from the values of ksiZ. 

The large number of small intraday jumps is then apparent also from the latent state time 

series of jump occurrences, corresponding to the Bayesian probabilities of jump occur-

rence. As we can see for example from Figure 12 (for EUR/USD), the SVJD-RV-Z model 

identified a significantly higher number of probable jumps in the time series than the 

SVJD-RV and SVJD models. At the same time, however, is the number of identified jumps 

much smaller than what would be implied by the values of the Z-Estimator alone (as can 

be seen from the lower-right subplot). The difference in the number of jumps on the lower 

two subplots shows how numerous the small intraday jumps in fact are. 

From the time series of the Bayesian probabilities of jump occurrence we can further see 

that the standard SVJD model was not able to identify almost any jumps with a high prob-

ability of occurrence, indicating that the estimation of jumps solely from the daily returns 

is problematic. 

The series of the estimated stochastic variances (Figure 11 for EUR/USD) show us that the 

stochastic variance estimates of the SVJD-RV and SVJD-RV-Z models are more variable 

than the estimates of the basic SVJD model, but less variable than the realized variance 

itself, indicating that the extended SVJD models are able to filter the noise plaguing the in 

the realized variance estimates of the stochastic variance, at least to a certain degree.  
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Table 4 | Full-sample MCMC parameter estimates and std. errors for the EUR/USD 

  EUR/USD 

  SVJD SVJD-RV SVJR-RV-Z 

  Estimate Std.Err Estimate Std.Err Estimate Std.Err 

mui 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 

muiJ 0.0076 0.0052 -0.0021 0.0023 0.0002 0.0004 

sigmaJ 0.0102 0.0012 0.0109 0.0015 0.0046 0.0003 

alpha -0.0466 0.0169 -0.1498 0.0339 -0.1480 0.0323 

beta 0.9955 0.0016 0.9855 0.0033 0.9857 0.0031 

gamma 0.0627 0.0045 0.1099 0.0080 0.1094 0.0067 

lambdaLT 0.0061 0.0050 0.0087 0.0030 0.0510 0.0059 

betaJ 0.4888 0.2866 0.4214 0.2552 0.6555 0.2892 

gammaJ 0.0377 0.0254 0.0483 0.0284 0.0104 0.0076 

sigmaRV    0.4252 0.0065 0.4266 0.0060 

muiZ        0.9339 0.0243 

ksiZ        3.6992 0.1356 

sigmaZ         1.2432 0.0184 

 

Table 5 | Full-sample MCMC parameter estimates and std. errors for the GBP/USD 

  GBP/USD 

  SVJD SVJD-RV SVJR-RV-Z 

  Estimate Std.Err Estimate Std.Err Estimate Std.Err 

mui 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

muiJ -0.0004 0.0009 -0.0015 0.0028 0.0000 0.0004 

sigmaJ 0.0057 0.0005 0.0082 0.0014 0.0041 0.0004 

alpha -0.0852 0.0240 -0.1157 0.0271 -0.1182 0.0285 

beta 0.9920 0.0022 0.9890 0.0026 0.9888 0.0027 

gamma 0.0806 0.0067 0.0922 0.0048 0.0942 0.0055 

lambdaLT 0.0698 0.0161 0.0057 0.0022 0.0427 0.0083 

betaJ 0.4665 0.2588 0.3423 0.2514 0.7545 0.3067 

gammaJ 0.0260 0.0211 0.0410 0.0274 0.0160 0.0091 

sigmaRV    0.3949 0.0052 0.3874 0.0052 

muiZ        0.7826 0.0260 

ksiZ        3.5542 0.1641 

sigmaZ         1.2151 0.0206 
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Table 6 | Full-sample MCMC parameter estimates and std. errors for the USD/CHF 

  USD/CHF 

  SVJD SVJD-RV SVJR-RV-Z 

  Estimate Std.Err Estimate Std.Err Estimate Std.Err 

mui 0.0000 0.0001 -0.0001 0.0001 -0.0001 0.0001 

muiJ -0.0019 0.0014 0.0212 0.0218 0.0006 0.0013 

sigmaJ 0.0082 0.0012 0.0491 0.0130 0.0098 0.0016 

alpha -0.2463 0.0671 -0.2258 0.0438 -0.3148 0.0538 

beta 0.9759 0.0066 0.9778 0.0043 0.9690 0.0053 

gamma 0.1510 0.0167 0.1201 0.0082 0.1455 0.0092 

lambdaLT 0.0603 0.0258 0.0036 0.0014 0.0275 0.0048 

betaJ 0.4537 0.2571 0.3586 0.2402 0.5536 0.2946 

gammaJ 0.0298 0.0237 0.0604 0.0236 0.0161 0.0140 

sigmaRV    0.4229 0.0060 0.4119 0.0062 

muiZ        0.9354 0.0246 

ksiZ        4.3716 0.2289 

sigmaZ         1.3120 0.0204 

 

Table 7 | Full-sample MCMC parameter estimates and std. errors for the USD/JPY 

  USD/JPY 

  SVJD SVJD-RV SVJR-RV-Z 

  Estimate Std.Err Estimate Std.Err Estimate Std.Err 

mui 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 

muiJ -0.0014 0.0012 -0.0017 0.0035 0.0003 0.0007 

sigmaJ 0.0106 0.0013 0.0141 0.0028 0.0068 0.0004 

alpha -0.1607 0.0383 -0.6797 0.0946 -0.7286 0.0968 

beta 0.9847 0.0036 0.9341 0.0092 0.9295 0.0094 

gamma 0.1121 0.0119 0.2255 0.0142 0.2363 0.0138 

lambdaLT 0.0557 0.0193 0.0095 0.0034 0.0414 0.0054 

betaJ 0.4402 0.2584 0.4057 0.2534 0.3524 0.2422 

gammaJ 0.0297 0.0234 0.0533 0.0274 0.0117 0.0102 

sigmaRV    0.4008 0.0083 0.3872 0.0089 

muiZ        0.9573 0.0242 

ksiZ        3.7210 0.1489 

sigmaZ         1.2923 0.0191 
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Figure 11 | MCMC estimated latent series of stochastic variances (EUR/USD) 

 

Figure 12 | MCMC estimated probabilities of jump occurrences (EUR/USD) 
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Figure 13 | MCMC estimated latent series of stochastic variances (GBP/USD) 

 

Figure 14 | MCMC estimated probabilities of jump occurrences (GBP/USD) 
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Figure 15 | MCMC estimated latent series of stochastic variances (USD/CHF) 

 

Figure 16 | MCMC estimated probabilities of jump occurrences (USD/CHF) 
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Figure 17 | MCMC estimated latent series of stochastic variances (USD/JPY) 

 

Figure 18 | MCMC estimated probabilities of jump occurrences (USD/JPY) 
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1.6.2  Out-Sample Analysis 

For the out-sample analysis of the predictive accuracy of the models (SVJD, SVJD-RV 

and SVJD-RV-Z), the foreign exchange rate time series are split into an in-sample period 

(first 2 000 days ranging from 1.11.1999 to 3.7.2007) and an out-sample period (4.7.2007 

to 15.6.2015). The MCMC algorithm is then applied to the in-sample period to estimate 

the model parameters and the in-sample evolution of the latent state variables (the stochas-

tic variances, jump occurrences and jump sizes). SIR Particle Filter is then used to sequen-

tially estimate the evolution of the latent state variables in the out-sample period. 

This enables us to estimate the posterior distributions of the latent states at each time point 

in the out-sample period, conditional on the observed history until the given time point. 

Predictions into the future are then generated by sampling the latent states (i.e. particles of 

the particle filter) at each time point and simulating their evolution into the future by using 

the model equations. The goal of the study is to assess the predictive accuracy of the mod-

els with regards to the future quadratic variance. 

MCMC algorithm is used for the in-sample estimation of the model parameters and latent 

state variables. The algorithm is run over 5 000 iterations, with the first 2 000 discarded 

and the latter 3 000 used to calculate the parameter estimates based on the posterior means. 

The SIR Particle Filter used to sequentially estimate the evolution of the latent state varia-

bles over the out-sample period is run with 20 000 particles, whose values are initialized 

by sampling from the MCMC estimated distribution of the latent states in the last day of 

the in-sample period. The threshold for re-sampling was set to 200 particles. 

At each time-point (i.e. day) of the out-sample period, simulations of the future evolution 

of the particles are run, to simulate the evolution of the stochastic variances and jumps in 

a 1-day, 5-day and a 20-day horizon. These are then used to calculate the quadratic varia-

tion for each simulation and the simulated quadratic variations are then averaged to arrive 

at the mean forecast of the quadratic variation in the given forecast horizon. 

The forecasts of the quadratic variations are compared with the future realized variance 

(computed for a 1-day, 5-day or 20-day period), which is used as a proxy of the unobserved 

quadratic variation in the future. R-Squared values of the forecasts are then computed. 

Table 8 contains the results of the out-sample test. 

 

Table 8 – Out-Sample R-Squared of the quadratic variation forecasts 

  1-Day horizon 5-Day horizon 20-Day horizon 

  SVJD SVJD-RV SVJD-RV-Z SVJD SVJD-RV SVJD-RV-Z SVJD SVJD-RV SVJD-RV-Z 

EUR/USD 0.4506 0.5576 0.5576 0.5827 0.6840 0.6772 0.5715 0.6709 0.6574 

GBP/USD 0.3235 0.5832 0.5945 0.3582 0.6484 0.6503 0.2734 0.5053 0.5249 

USD/CHF 0.0067 0.0077 0.0081 0.0182 0.0246 0.0240 0.0348 0.0502 0.0509 

USD/JPY 0.1600 0.2442 0.2827 0.2149 0.2744 0.2950 0.1994 0.1942 0.1748 
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From the results in Table 8 we can see that the SVJD-RV and SVJD-RV-Z models achieve 

in most of the cases similar predictive accuracy, while the predictive power of the standard 

SVJD model is lower. This is in line with the results of the previous analyses and it indi-

cates that it is indeed worthy to utilize the power-variation estimators when estimating 

SVJD models. The SVJD-RV-Z model outperforms the SVJD-RV model especially at the 

20-day horizon for the EUR/USD and GBP/USD exchange rate and on the 1-day horizon 

for the USD/JPY exchange rate, the differences are, however, rather small. 

1.7 Conclusions 

A methodology was presented of how to utilize power-variation estimators computed from 

high-frequency data in the Bayesian estimation of Stochastic-Volatility Jump-Diffusion 

(SVJD) models. A standard SVJD model uses only the information from daily returns to 

estimate the latent stochastic variances, jump occurrences and jump sizes of the time series. 

In the presented study, two extended models were proposed, the SVJD-RV model, utilizing 

additionally the realized variance estimator for the estimation of the stochastic variance, 

and the SVJD-RV-Z model, utilizing in addition to that the non-parametric Z-Estimator, 

to estimate the jump occurrences in the time series. 

A MCMC algorithm, combining a Gibbs Sampler and a Metropolis Hastings algorithm 

was presented, in order to estimate the parameters and the latent state variable time series 

of the proposed models in the in-sample period, while the Sequential Importance 

Resampling (SIR) Particle Filter was proposed, to sequentially estimate the evolution of 

the latent states in the out-sample period and use it to generate forecasts via simulations. 

In the simulation part of the study, the proposed models were estimated on simulated time 

series with different jump magnitudes and the accuracy of the model fit to the underlying 

stochastic variances and jumps was assessed. It was shown that both of the proposed mod-

els utilizing the power-variation estimators clearly outperform the standard SVJD model 

that uses only the daily data. The SVJD-RV model achieved the best results in the simula-

tion study, outperforming the SVJD-RV-Z model, as well as the non-parametric ap-

proaches for the estimation of the stochastic variances and jumps in the simulated series. 

Empirical study of the models was performed in order to assess their out-sample predictive 

accuracy with regards to the future quadratic variances. In the first step, the models were 

fitted to the in-sample evolution of 4 foreign exchange time series (EUR/USD, GBP/USD, 

USD/JPY and USD/CHF) by using a MCMC algorithm. SIR Particle Filter was then used 

to sequentially estimate the evolution of the latent state variables (i.e. stochastic variances, 

jump occurrences and jump sizes) over the out-sample period, and simulations were used 

to calculate 1-day, 5-day and 20-day forecasts of the process quadratic variation. The fore-

casts were then compared with the subsequently observed realized variance. The out-sam-

ple predictive accuracy of the SVJD-RV and SVJD-RV-Z models, using the power varia-

tion estimators, was higher than in the case of the simple SVJD model that works only with 

the daily returns.  
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