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Jiří Witzany1, Milan Fičura2 

Abstract 

Recently, there has been considerable interest in machine learning (ML) applications for the valuation 

of options. The main motivation is the speed of calibration or, for example, the calculation of credit 

valuation adjustments (CVA). It is usually assumed that there is a relatively liquid market with plain 

vanilla option quotations that can be used to calibrate (using an ML model) the volatility surface, or to 

estimate the parameters of an advanced stochastic model. In the second stage the calibrated volatility 

surface (or the model parameters) are used to value given exotic options, again using a trained neural 

networks (NN) or another ML model. The NNs are typically trained “off-line” by sampling many model 

and market parameter combinations and calculating the options´ market values. In our research, we 

focus on the quite common situation of a non-liquid option market where we lack a sufficient number 

of plain vanilla option quotations to calibrate the volatility surface, but we still need to value an exotic 

option, or just a plain vanilla option subject to a more advanced stochastic model, as that is typical for 

energy and carbon derivative markets. We show that it is possible to use selected moments of the 

underlying historical price return series complemented with a volatility risk premium estimate to value 

such options using the ML approach. 

AMS/JEL classification: C45, C63, G13 

Keywords: derivatives valuation, options, calibration, neural networks 

1. Introduction 

Modern approaches to the valuation of financial, energy, and commodity options, or other derivatives, 

are based on various stochastic models describing the dynamics of the underlying asset prices. In more 

advanced models, there are additional directly unobservable stochastic variables such as volatility, 

jumps, or convenience yield in the case of commodities. The simpler models (such as geometric 

Brownian motion) allow us to obtain analytical formulas to value plain vanilla European style options 

(e.g., the Black-Scholes-Merton formula). However, the valuation becomes less and less tractable, with 

more complex models requiring partial numerical calculations or a general Monte Carlo simulation 

approach. The advantage of the complex stochastic models is their ability to capture better the return 

dynamics and to provide better evaluation of exotic derivatives. Their disadvantage lies in more 
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difficult and slower computations, including the model calibration, risk quantification, or credit 

valuation adjustment (CVA) calculation.  

Evaluation of a derivative contract, besides its parameters, requires knowledge of the model 

parameters that are typically obtained by the process of calibration. The usual calibration procedure 

is based on quotations of plain derivative contracts (typically European options) and on finding a vector 

of the model parameters that makes the model prices as close as possible to the market quotes. The 

model and its estimated parameters can then be used to evaluate an exotic derivative contract. The 

optimization requires repeated evaluation of a grid of options conditional on the model and its 

parameters, which means that if the single option evaluation is slow, then the calibration procedure 

itself is much slower. Since the calibration and valuation of derivatives needs to be done by traders 

“online” during a trading session, a valuation procedure that takes hours is not acceptable. A possible 

solution to the computational problem is to find a fast approximating function evaluating the plain 

vanilla derivatives with sufficient precision. It turns out that the standard feed-forward neural network 

(NN) trained on a synthetic model-generated dataset can serve this purpose quite well. The dataset 

can be generated “off-line” by sampling the parameters and evaluating the options. It can be as large 

as time and computational resources allow. Since the evaluation of a feed-forward NN based on matrix 

multiplication and elementary functions’ application is relatively fast and efficient, the on-line 

calibration procedure becomes much more efficient. The NN pricing function approximation can also 

be used for CVA calculations requiring, in general, simulations of the underlying asset prices’ dynamics 

and the evaluation of the conditional derivative values in all the scenarios and at different points in 

time. If the derivative evaluation involves a Monte Carlo simulation, then we face a problem of nested 

Monte Carlo simulations. Again, the fast NN approximation can make the CVA calculations 

manageable, similarly as in the case of derivative portfolios VaR or CVaR calculations. 

The motivation of this research is the pricing of (exotic) options on markets requiring more complex 

stochastic models where, in addition, the plain vanilla option market is not sufficiently liquid to 

calibrate a model in the way described above. The energy commodity markets present a typical 

example. The behaviour of energy prices shows spikes and changing volatility, and the stochastic 

models need to be rich enough to capture not only these phenomena, but also the complex initial 

forward term structure. In addition, the energy markets are segmented due to limited or costly 

transportation. For example, the electricity power markets are segmented into national grids and the 

natural gas markets are segmented by the hubs from which the gas flows. While some segments might 

be liquid, even in terms of option derivatives trading, most segments have lower liquidity. In spite of 

that, options are occasionally traded on these markets, and so the stochastic models need to be 

somehow calibrated and the options evaluated. 

The contribution of our paper is a proposal of an NN training and valuation methodology based on the 

utilization of the information from historical asset returns data in the form of moments and other 

selected characteristics. In order to value an option conditional on a stochastic volatility model, the 

volatility premium parameter is also needed. We propose a way to estimate it from available 

quotations on the market, or from a more liquid, but similar market. In our empirical study, we will 

demonstrate that the performance of the valuation approach is comparable to NN-based valuation 

using the implied volatilities. 

We provide a review of literature related to NN applications for derivative pricing in the following 

section. Section 3 outlines the pricing and calibration NN based on option prices and our proposed 

approach. We also discuss the problem of irreducible error, variance, and bias decomposition. Section 

4 summarizes the main properties of several stochastic models, in particular of the Heston model, and 

discusses the problem of the volatility premium (price of risk). Details of the synthetic dataset used for 
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training and out-of-sample testing are given in Section 5. The results of our empirical tests comparing 

the option based NN performance with our proposed moment-based pricing and calibration NNs are 

reported and discussed in Section 6. Finally, Section 7 summarizes the main results, conclusions, and 

further possible research directions. 

2. Literature review 

Hutchinson et al. (1994) is one of the first academic studies of NN applications for derivatives pricing. 

The study proposes a non-parametric approach to the valuation and hedging of options based on 

historical option prices that is compared to an NN trained to approximate the Black-Scholes (BS) 

formula on synthetically generated data. However, the NN model has the underlying asset price and 

the option parameters as the only inputs, while the interest rate and volatility are either assumed to 

be given or estimated in a simple way from the historical data.  

Interestingly, there is a long gap in the literature on NN applications for derivatives pricing, with more 

papers coming at the end of the last decade. Culkin and Das (2017) show that a deep NN trained to 

approximate the BS model with volatility, interest rate, and income yield among the NN inputs 

(features) gives good precision (relative pricing error around 1% of the strike price and R2 over 99.8%). 

Ferguson and Green (2018) train an NN to value basket options. The NN, which has volatilities and 

correlations among its features, is trained on a synthetically generated dataset where options are 

valued using a Monte Carlo simulation, possibly with a lower number of simulations. They argue that 

the NN learns to remove random Monte Carlo (MC) noise, and in the end performs better than an MC 

valuation with a relatively larger number of simulations.  

Regarding the model calibration task, Hernandez (2017) proposes a direct approach where option 

market prices are features, and the vector of a stochastic model parameters is the target of an NN to 

be trained. This means that the market option prices, or the implied volatilities, must be available on 

a fixed grid. The empirical study trains an NN on a dataset generated in a way that is based on implied 

volatilities and yield curves used as features and the calibrated vectors of the (two-factor) Hull-White 

model parameters as targets.  

Liu et al. (2019) propose a two-step model calibration approach: forward-pass when a pricing NN is 

trained and backward-pass when the pricing NN is used in a calibration optimization procedure. Büchel 

et al. (2021) advocate the two-step calibration approach, mainly from the perspective of validation 

requirements, and test it on market data. The performance of the NN approach is benchmarked against 

a real-life calibration framework that is used at a large financial institution. Horvath et al. (2021) show 

that a two-step approach can be used as a flexible tool to calibrate a wide range of 2nd generation 

stochastic models (e.g. rough volatility). Cao, Chen, Hull, & Poulos (2022) compare the two-step 

calibration approach with the volatility feature approach, where the volatility surface data and the 

option parameters are the features and an exotic option price is the output (target) of an NN.  

In this study, we focus on the situation when plain-vanilla option market prices are not available and 

the parameters of a stochastic model need to be estimated from historical data and possibly from 

option prices quoted on related markets. Estimation of the Black-Scholes model parameters, in 

particular of the constant model volatility, is relatively simple using a sample estimate or a more 

advanced model such as GARCH etc. However, the estimation of parameters of models with stochastic 

volatility, jumps, and possibly other stochastic variables becomes much more challenging since only 

the asset returns are observable, while the stochastic volatility or jumps are latent. There is a vast 

literature on this subject mostly applying Bayesian methods such as MCMC or particle filters (see e.g. 

Shephard, 2004, Jacquier et al., 2007, or Fičura and Witzany, 2016). The problem with these methods, 
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similarly to the calibration from option prices, is their computational cost; in fact, it is typically much 

higher than in the case of the classical calibration. Many of the Bayesian methods are not appropriate 

when the pricing needs to be performed on-line, and so there is a strong motivation to research 

alternative, computationally more efficient machine learning methods. 

3. Calibration of Models and Pricing of options with Neural Networks 

3.1. Model Calibration 

The derivatives pricing models typically describe the stochastic dynamics of returns and possibly of 

other stochastic variables such as the stochastic volatility. A particular model ℳ is specified by a vector 

of parameters Θ and is assumed to be the data-generating process of the historical data as well as of 

their future probability distribution. Therefore, the model ℳ can be used for the valuation of a given 

derivative with an analytical formula (such as the Black-Scholes formula), or for empirical valuation 

based on a forward-looking Monte Carlo simulation of the asset prices. In any case, for a given 

derivative with specification given by a vector of parameters 𝑂𝑃 (e.g. the strike price 𝐾, maturity 𝑇, 

and call/put option indicator, etc.) the value of the derivative is given by a function of Θ, 𝑂𝑃, and the 

actual market prices 𝑀𝑉 (the underlying asset price, the risk-free interest rate, etc.), i.e.   

𝑐 = 𝑓ℳ(𝑂𝑃, 𝑀𝑉, Θ ). 

By calibrating the model ℳ we understand the finding of a vector of parameters Θ consistent with the 

actual market prices 𝑐𝑗 of derivatives with specifications 𝑂𝑃𝑗, 𝑗 = 1, … , 𝑛, with the other actual market 

prices 𝑀𝑉, and with the series of historical returns of the underlying assets (let us denote the series as 

𝑑𝑎𝑡𝑎). The common calibration approach appropriate, for example, for the pricing of exotic options is 

based on available plain vanilla (European style) option quotations 𝑐𝑗. Optimally, we would like to find 

Θ solving the equations 𝑐𝑗 = 𝑓ℳ(𝑂𝑃𝑗, 𝑀𝑉, Θ) for all 𝑗. However, this is rarely possible, and we must 

implicitly accept that, firstly, the model is only an approximation of the market reality, and secondly, 

even if the model described the market reality perfectly, the market prices would contain noise with 

respect to the prices implied by the theoretical model. Therefore, the calibration procedure entails the 

minimization of a total loss function measuring the deviation of the model implied prices and the 

market quotations, i.e. 

Θ̂ = arg min 
Θ

∑ 𝐿(𝑐𝑗 , 𝑐𝑗
ℳ  ), (1) 

where 𝑐𝑗
ℳ = 𝑓ℳ(𝑂𝑃𝑗, 𝑀𝑉, Θ) and the loss function 𝐿 might, for example, be the weighted squared 

difference between the market and option price 𝐿(𝑐𝑗, 𝑐𝑗
ℳ  ) = 𝑤𝑗(𝑐𝑗 − 𝑐𝑗

ℳ)
2
, or the weighted squared 

difference between the Black-Scholes implied volatilities 𝐿(𝑐𝑗, 𝑐𝑗
ℳ ) = 𝑤𝑗(𝜎𝐵𝑆(𝑐𝑗) − 𝜎𝐵𝑆(𝑐𝑗

ℳ))
2

, etc. 

In the empirical study, further on, we will use uniformly weighted squared differences between the 

option prices, but another definition could easily be used as well. 

An alternative calibration approach can be based on the history of market prices only. In this case, the 

goal is to estimate  Θ̂ ≈ 𝐸[Θ|𝑑𝑎𝑡𝑎], or optimally, in the Bayesian set up, the posterior probability 

distribution of the parameters 𝑝(Θ|𝑑𝑎𝑡𝑎).  

It should be noted that the parameters calibrated based on the option prices are “risk-neutral”, 

allowing us to price derivatives based on the risk-neutral principle, while the parameters estimated 

from historical data correspond to the “physical” probability measure. In order to transform the 

physical parameter estimates to risk-neutral, additional parameters such as the market or volatility 
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risk premiums need to be estimated. This is not an issue if we assume that the underlying process is 

the Black-Scholes model (geometric Brownian motion) where the volatility is assumed to be constant, 

but it becomes more problematic once we admit that the volatility is stochastic, and a volatility risk 

premium needs to be estimated. We are going to discuss this issue in more detail in Section 4. in the 

context of the Heston model, but let us firstly outline possible machine learning (ML) applications for 

derivative pricing and model calibration. 

3.2. Neural Networks 

Our goal will be to approximate a multivariable pricing function, or to estimate unknown model 

parameters given historical data using an ML model. There are many possibilities such as the neural 

networks, polynomial regression, regression support vector machines, gradient boosting regression, 

etc. (see e.g. Hastie et al., 2009). However, in line with the literature on ML applications for financial 

derivatives pricing, we will focus on neural networks that serve as flexible universal approximators: 

according to Hornik’s (1991) well-known theorem, any continuous multivariable function can be 

approximated arbitrarily well by a single (or multi-layer for any given number of layers) hidden layer 

feed-forward NN. 

We also do not focus too much on the various types of NN, but rather on their performance on the 

validation and testing datasets. We argue that the main issue, achieving higher precision of our 

approximating valuation functions, is in the “information content” of the vector of input variables 

(features) rather than the NN approximating performance itself. We will use the standard feed-forward 

architecture where the NN is specified by the number of neurons in the hidden layers (see e.g. Hastie 

et al., 2009). The default activation function will be the sigmoid function (i.e. 𝑡𝑎𝑛ℎ), and the training 

procedure will use the Levenberg-Marquardt optimization algorithm. 

The NN and computations will be implemented in Matlab, which allows us to train, visualize and report 

the performance of the networks in an efficient and convenient way (see Figure 1 as an example of a 

two-hidden-layer NN with 10+10 hidden neurons and 1 output neuron).  

Figure 1: A neural network with 2 hidden layers created in Matlab 

 

3.3. NN Pricing and Calibration Approach 

Let us first outline the most straightforward NN pricing model. The goal is to train an NN approximating 

the function 𝑐 = 𝑓ℳ(𝑂𝑃, 𝑀𝑉, Θ), i.e. with the features and the target as shown in Figure 2. The 

advantage of the model-based approach is that the synthetic training set can be generated by sampling 

the model parameters Θi, the market prices 𝑀𝑉𝑖, and the option parameters 𝑂𝑃𝑖. The derivative values 

𝑐𝑖 are then calculated using the valuation function, or its numerical (e.g. Monte Carlo) approximation. 

Numerical experiments (Ferguson and Green, 2018) show that the neural networks are able to remove 

the noise from the derivative calculation in the training set as long as the approximations are not 

biased. The off-line generated dataset can be as large as the computational resources and time allow. 

The parameters need to be sampled from appropriate distributions covering sufficiently well the range 
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of values for which the model is to be used. We will discuss our approach to dataset building in Section 

5.   

Figure 2: Option pricing Neural Network architecture 

 

 

The trained NN defines a function approximating the theoretical valuation function  

𝑓𝑁𝑁(𝑂𝑃, 𝑀𝑉, Θ) ≈ 𝑓ℳ(𝑂𝑃, 𝑀𝑉, Θ), 

which can be used in the process of calibration, i.e. 

Θ̂ = arg min
Θ

∑(𝑓𝑁𝑁(𝑂𝑃𝑗, 𝑀𝑉, Θ) − 𝑐𝑗)
2

𝑗

 

where 𝑐𝑗 is a set of actual option quotes with specifications 𝑂𝑃𝑗, 𝑗 = 1, … , 𝑛 and using the sum of 

squared errors as the loss function. The main advantage of the NN approximating function is its 

computational speed, which allows much faster and possibly online calibration of the model 

parameters. The speed of the optimization itself depends on the selected procedure.  For example, Liu 

et al. (2019) interpret the calibration procedure as the backward-pass when the input layer of the NN 

used in the forward pass is trained using the data that enter the target layer. They propose using a 

population-based optimization algorithm (Differential Evolution) and show that it is able to estimate 

the calibrated parameters of the Heston model relatively fast. 

3.4. Direct Calibration Approach and Volatility Feature Approach  

Another possibility (Hernandez, 2017) is the direct calibration approach with the NN architecture 

outlined in Figure 3. In this case, a set of market option prices is given on the input, and the model 

parameters define the target. It means that the synthetic training set needs to be generated in a slightly 

different way: for a given sampled set of model parameters Θ𝑖 and market variables 𝑀𝑉𝑖 the option 

prices 𝑄𝑖 = 〈𝑐𝑖𝑗 , 𝑂𝑃𝑖𝑗 , 𝑗 = 1, … , 𝑚〉 are calculated (or, alternatively, implied volatilities) typically on a 

grid of strike prices and maturities. The NN trained on the dataset defines a function Θ̂ = 𝑓𝑁𝑁(𝑄, 𝑀𝑉) 

that estimates the model parameters in a fraction of seconds. Subsequently, the derivatives, for 

example exotic options, can be valued using the model valuation function or with a separate pricing 

NN having the parameters Θ̂ on the input. The disadvantage of this approach is the lower precision of 

the estimates and a less transparent validation compared to the two-step model calibration approach 

(Büchel et al., 2021). 
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Figure 3: Direct calibration Neural Network architecture 

 

Cao et al. (2022) suggest merging all the estimation steps into one, i.e. training a single NN that 

implicitly calibrates the model and estimates an exotic derivative value given the volatility surface (i.e. 

a set of implied volatilities on a grid of strike prices and maturities), market prices, and the derivative’s 

parameters on the input (Figure 4). The NN is trained on a synthetic dataset generated conditional on 

a model (e.g. Heston) similarly to the direct calibration approach. In order to compare the volatility 

feature approach (VFA) with the two-step model calibration approach, Cao et al. (2022) pick another 

model (e.g. Bates) to generate a testing set of “true” volatility surfaces and prices of exotic options 

with varying parameters. The empirical results indicate that VFA performs slightly better compared to 

MCA. 

Figure 4: Volatility feature option pricing Neural Network architecture 

 

3.5. Realized Moments Feature Approach  

Finally, let us formulate the calibration and pricing approach that represents the main contribution of 

this study. The problem encountered on many markets, in particular on the fragmented energy 

markets (fragmented by region and energy commodity types), is how to value options (possibly exotic) 

if there are no or just a few plain vanilla quotations. The natural suggestion is to use the only available 

information, i.e., besides the actual market prices and rates, the history of the underlying asset returns. 

The asset return history can be used to estimate stochastic model parameters (including stochastic 

volatility models) using various maximum likelihood or Bayesian methods that are too slow to be used 

for online calibration and pricing, as discussed above. Since we want to stick to the feed-forward NN 

that can efficiently process only a limited number of inputs, we propose to use selected moments and 

other characteristics 𝑀 = 〈𝑚𝑗, 𝑗 = 1, … , 𝑚〉  as informative features that can be relatively efficiently 

calculated from the historical return series. The direct calibration or pricing NN architecture can then 

be designed similarly to the approaches based on the volatility surface as outlined in Figure 5 and 

Figure 6.  

The training dataset for the direct calibration model (Figure 5) can be generated similarly as for the 

model shown in Figure 3. However, as explained in more detail in Section 4, the model parameters Θ𝑃 

of the physical data generating process differ from the risk-neutral parameters Θ𝑅𝑁, and the difference 

is expressed by one or more risk premium parameters Λ. Therefore, to generate the training dataset 

we need to sample the physical model parameters Θ𝑗, simulate a series of historical returns and the 

corresponding vector of moments and other characteristics. Note that, for stochastic volatility models, 

the simulation involves also sampling of the stochastic volatility history, but the characteristics used as 
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the NN input moments cannot use the stochastic volatility series, since it is not observable on the 

market.    

Figure 5: Model calibration based on historical returns NN architecture 

 

The vector of physical process parameters  Θ̂ = 𝑓𝑁𝑁(𝑀) estimated by a trained NN is not, 

unfortunately, sufficient for derivatives valuation, in particular if the model involves stochastic 

volatility. In this case, the volatility risk premium needs to be estimated (implied) from existing option 

quotation or from a related, but more liquid market (e.g., in the case of the energy markets).  

Since the volatility risk premium (or other risk premia) cannot be inferred from the underlying asset 

return series, the pricing NN (Figure 6) input needs to include the vector of risk premia Λ. Hence the 

training dataset is in this case generated by sampling the physical process parameters Θ𝑖, risk premia 

Λ𝑖, then by simulating the physical process historical returns and their characteristics 𝑀𝑖, and  finally 

calculating the derivative price 𝑐𝑖 = 𝑓ℳ(𝑂𝑃𝑖 , 𝑀𝑉𝑖, Θ𝑖, Λ𝑖) for some sampled option parameters 𝑂𝑃𝑖 

and market variables 𝑀𝑉𝑖 (for 𝑖 = 1, … , 𝑁). Strictly speaking, the risk premia are themselves model 

parameters, but since we need to distinguish the risk-neutral and the physical processes, the vector of 

risk premia Λ will be recorded separately.  

Figure 6: Derivative pricing based on historical returns NN architecture 

 

The flexibility of the NN allows us to experiment with other possible solutions to the risk premium 

estimation problem. We will also test an NN where one or only a few known quoted option prices 

complement the historical moments. In this case, the risk premiums can be inferred from the option 

prices, so the risk premiums do not need to be given on the input of the NN. 

3.6. Estimation Error Decomposition 

It is important to realize that there is a substantial difference between training an NN approximating a 

given function such as 𝑐 = 𝑓ℳ(𝑂𝑃, 𝑀𝑉, Θ), and training an NN approximating a variable that is only 

statistically related to the inputs, as in the case of moment-based pricing.  

As for any statistical learning algorithm trying to estimate a target 𝑌 given a vector of features 𝑋, the 

error can be decomposed into the irreducible error var[Y|X] given by the conditional probability 

distribution 𝑝(𝑌|𝑋), and the estimator 𝑓(𝑋) variance and bias (see Hastie et al., 2009). Specifically, 

𝐸 [(𝑌 − 𝑓𝑇̂(𝑋))
2

|𝑋] = 

                                = var[Y|X] + E [(E[𝑓𝑇(𝑋)] − 𝑓𝑇(𝑋))
2

|𝑋] + (E[Y|X] − E[𝑓𝑇(𝑋)|𝑋])
2
 

(2) 
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where the estimator 𝑓𝑇(𝑋) is also interpreted as a random variable depending on the training set 𝑇 

given a particular approximating model and its meta-parameters. The irreducible error depends on the 

relationship between 𝑋 and 𝑌, or, intuitively speaking, on the information content of 𝑋 that can be 

used to estimate 𝑌,  and so it cannot be eliminated whatever the ML algorithm is or how complex it is. 

At the same time, the remaining two components of the error represent the key ML dilemma between, 

on the one hand, model complexity causing larger variance due to the effect of overfitting, and, on the 

other hand, robustness (simplicity) that typically causes a bias. 

In the case of the NN pricing based on a model and set of parameters, the irreducible error will equal 

zero provided the valuation function 𝑌 = 𝑓ℳ(𝑋) is implemented precisely. Nevertheless, even if the 

valuation function is implemented (when the training set is generated) with noise, i.e.  𝑌 = 𝑓ℳ(𝑋) + 𝜀 

where 𝐸[𝜀|𝑋] = 0, then the irreducible error remains very small provided that the NN is trained with 

the quadratic loss function, i.e. targeting 𝐸[𝑌|𝑋] = 𝑓ℳ(𝑋), and the variance of noise var[𝜀|𝑋] is 

relatively small. This fact explains the numerical observation of Ferguson and Green (2018) that a NN 

can achieve high precision even if it is trained on a training set with approximate derivative valuations.  

However, in the volatility feature valuation approach, and in particular in the realized moment 

approach, the irreducible error becomes more significant – it depends on the “information content” 

of the vector of features. Firstly, focusing on the problem of model-calibration based on option market 

prices, we have to realize that the options are quoted with an error (or within a bid-ask spread interval) 

and not as theoretical option values. Therefore, for a given set of option market prices 𝑋 there are 

many different parameter vectors 𝑌 that are theoretically consistent with the quotes, but of course 

with different conditional probabilities (likelihood). Moreover, the model we are calibrating only 

approximates the market reality. This is also reflected in the fact, that we only optimize the loss 

function  (1) and do not seek an exact fit. Secondly, the “loose” statistical relationship between the 

input (features) 𝑋 and the output (target) 𝑌 is even more pronounced in the case of moment-based 

calibration, or pricing when the synthetically simulated historical time series by definition contain a 

noise. In addition, when the model is implemented in practice, the historical prices will contain the 

market noise as well. Part of the “information” contained in the asset return series can also be lost by 

defining a limited set of moments and characteristics. Hence, their definition and selection will be a 

key problem in the design of both calibration and valuation NNs. 

4. Selected Stochastic Models 

Let us recall the standard Black-Scholes (BS) model characterized by the stochastic differential 

equation for the asset price 𝑆 with constant drift 𝜇 and constant volatility 𝜎, i.e. 

𝑑𝑆 = 𝑆𝜇𝑑𝑡 + 𝑆𝜎𝑑𝑊. 

In order to value a European style option with the strike price 𝐾 and maturity 𝑇, the drift parameter is 

replaced by the risk-free interest rate 𝑟, i.e. 𝑐 = 𝑓𝐵𝑆(𝑆0, 𝑟, 𝜎; 𝐾, 𝑇). Practically, the volatility 𝜎 is a key 

market parameter, in addition depending on 𝐾 and 𝑇 forming the volatility surface 𝜎 = 𝜎(𝐾, 𝑇). 

However, in order to sample the historical returns under the physical probability measure, the drift 𝜇 

is needed. It is typically expressed in the form 𝜇 = 𝑟 + 𝜆𝜎, where 𝜆 is a given price of market risk. Or 

vice versa, if the parameters 𝜇 and 𝜎 are estimated from the historical returns then, the market price 

of risk can be calculated as 𝜆 =
𝜇−𝑟

𝜎
.  

The BS model is sufficient to value European style options given the volatility surface 𝜎 = 𝜎(𝐾, 𝑇) In 

fact, the (BS formula implied) volatility surface is just a conventional way to express the market prices 

of options with different strikes and maturities. To value more complex exotic options, the general 

Monte Carlo simulation approach can be used. The drift 𝜇 can be again replaced by the risk-free 
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interest rate, but it is not clear which constant volatility 𝜎 from the volatility surface should be used. 

The empirical phenomenon of the volatility surface is an expression of the fact that the market does 

not, in fact, see the asset log-returns normally distributed and the volatility constant. As a 

consequence, there are many alternative stochastic models trying to capture jumps in returns, 

stochastic volatility, or other properties and variables empirically observed on the market. 

In our empirical analysis, we will focus on the Heston (1993) model, which includes an additional 

stochastic volatility (variance) 𝑉 equation:  

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + √𝑉𝑑𝑊1, 

𝑑𝑉 = 𝜅(𝜃𝑉 − 𝑉)𝑑𝑡 + 𝜎𝑉√𝑉𝑑𝑊2, 

𝐸[𝑑𝑊1, 𝑑𝑊2] = 𝜌𝑑𝑡, 

(3) 

where 𝜌 is the leverage correlation parameter (typically negative), 𝜅 is the speed of mean reversion of 

the stochastic variance to its long-term level 𝜃𝑉, and 𝜎𝑉 the volatility of volatility. The advantage of the 

Heston model is that the European options can still be valued by a relatively fast formula 𝑐 =

𝑓𝐻𝑀(𝑆0, 𝑟, Θ; 𝐾, 𝑇) using numerical integration or the fast Fourier transformation. Here, Θ =

〈𝑉0, 𝜅, 𝜃𝑉, 𝜎𝑉 , 𝜌, 𝜆𝑉〉 is the vector of parameters that includes two not explicitly shown parameters in 

the stochastic differential equations (3). Firstly, the instantaneous initial variance 𝑉0 needs to be given 

as a model parameter, since the stochastic variance 𝑉 is not directly observed on the market. Secondly, 

the price of volatility risk 𝜆𝑉 is another parameter that is needed to value a derivative, unlike the 

market price of risk, and this deserves some more detailed comments. 

The derivation of the HM model formula can be obtained as a solution of the partial differential 

equation (PDE) based on the similar argument as in the BS model. Let Π = 𝑐 −
𝜕𝑐

𝜕𝑆
𝑆 be the value of a 

delta hedged portfolio where the long option is hedged by the underlying asset. The portfolio return 

does not depend on the (instantaneous) return of the underlying asset, but it does depend on the 

stochastic volatility (variance) return (change). The problem is that the variance is not a price of a 

traded asset and the portfolio cannot be hedged against the volatility risk by a position in another asset 

(it can be hedged only by another derivative sensitive to 𝑉). Therefore, the expected return of the 

portfolio 𝐸[𝑑Π] = 𝑟Π𝑑𝑡 + 𝜆𝑉𝑉
𝜕c

𝜕𝑉
𝑑𝑡 includes the volatility premium 𝜆𝑉𝑉

𝜕c

𝜕𝑉
𝑑𝑡, where 𝑉

𝜕𝑐

𝜕𝑉
 can be 

interpreted as the volatility exposure and 𝜆𝑉 as the price of volatility risk (Hull and White, 1987). The 

corresponding PDE then takes the form 

𝜕𝑐

𝜕𝑡
+

1

2

𝜕2𝑐

𝜕𝑆2 𝑉𝑆2 + 
1

2

𝜕2𝑐

𝜕𝑉2 𝑉𝜎𝑉
2+ 

𝜕2𝑐

𝜕𝑆𝜕𝑉
𝜎𝑉𝑉𝑆𝜌 =  𝑟𝑐 −

𝜕𝑐

𝜕𝑆
𝑟𝑆 −

𝜕𝑐

𝜕𝑉
(𝜅(𝜃𝑉 − 𝑉) − 𝜆𝑉𝑉) 

Note that the initial parameters of (3) are physical, but can be easily adjusted to risk-neutral, setting 

𝜇 = 𝑟,  𝜅∗ = 𝜅 + 𝜆𝑉 , and 𝜃𝑉
∗ = 𝜃𝑉

𝜅

𝜅∗. Therefore,  the parameters (𝜅∗, 𝜃𝑉
∗ ) correspond to the risk-neutral 

probability measure that sets equal to zero not only the price of the market risk 𝜆𝑀 = 0, but also the 

price of volatility risk, 𝜆𝑉 = 0. It turns out that the empirical price of volatility risk is usually negative, 

since the systematic risk of volatility is negative (volatility tends to go up when the market goes down). 

It means that the implied volatility systematically overestimates the physical volatility, and similarly, in 

terms of the Heston model, we usually have 𝜅∗ < 𝜅 and 𝜃𝑉
∗ > 𝜃𝑉. 

Therefore, when the model is calibrated from option price data (volatility surface), then the price of 

volatility risk needs to be set equal to a constant, e.g. 𝜆𝑉 = 0, and the same price of volatility risk needs 

to be used for the purpose of valuation. In particular, if  𝜆𝑉 = 0, then the fitted 𝜅̂∗ and  𝜃𝑉
∗  are risk-

neutral. On the other hand, when the parameters of (3) are estimated from historical returns, then the 

estimates Θ̂P = 〈𝑉̂0, 𝜅̂, 𝜃𝑉 , 𝜎̂𝑉 , 𝜌̂〉  correspond to the physical parameters, and this information is not 
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sufficient to estimate the price of volatility risk 𝜆𝑉. Given the physical model parameter estimates Θ̂P 

and an option (with specification 𝑂𝑃) market price 𝑐𝑚𝑘𝑡, the price of volatility risk 𝜆𝑉 can, for example, 

be estimated (implied) by solving the equation  

𝑐𝑚𝑘𝑡 = 𝑓𝐻𝑀(𝑆0, 𝑟, Θ̂P, 𝜆𝑉; 𝑂𝑃). 

Let us conclude this section by mentioning a few other advanced stochastic models. Another relatively 

simple possible specification of the stochastic volatility model is the Hull and White (1987) model, 

where the variance 𝑉 follows the geometrical Brownian motion, or the log-variance model suggested 

in Melino and Turnbull (1990). The models become less tractable and more computationally intensive 

when we add jumps in returns and in volatility (Bates, 1996, Eraker et al., 2003), or when the standard 

Brownian motion is replaced with the long memory fractional Brownian motion (see e.g. Horvath et 

al., 2021 or Cao et al.,2022). In order to model the term structure of commodity forward prices, 

additional parameters and stochastic variables need to be considered. For example, the Yan (2002) 

model, besides the stochastic volatility, considers stochastic jumps, interest rates and the convenience 

yield. In spite of its complexity, the futures prices can be obtained analytically and the option prices by 

using numerical integration or MC simulation. 

5. Synthetic Training and Testing Dataset Construction 

Let us describe in more detail how we are going to generate the synthetic datasets for training and 

testing the NN described in Section 3. The training, pricing, and calibration procedure is subject to a 

theoretical model that needs to be fixed at the beginning. In the empirical study, we will stick to the 

Heston model (HM), but the method can be applied to more complex models such as the rough 

volatility models. Generally, we will follow the scheme shown in Figure 7. However, there is a slight 

difference between the dataset for pricing and calibration based on market option prices (where the 

model parameters will be risk-neutral, setting 𝜆𝑀 = 𝜆𝑉 = 0) and the dataset for the realized moment-

based pricing and calibration, where we need to sample the price of market risk 𝜆𝑀 and the price of 

volatility risk 𝜆𝑉 as well. 

Figure 7: Synthetic training and testing dataset generation 

 

Let us first note that due to the scalability of options the actual underlying asset price 𝑆0 can be set at 

a fixed value, for example 𝑆0 = 100. Since HM assumes a fixed interest rate 𝑟, we can set 𝑟 = 0 without 

loss of generality. Hence the market variables 𝑀𝑉𝑖 do not have to be sampled at all. 

Regarding the (European) option parameters 𝑂𝑃 = {𝐼, 𝐾, 𝑇}, we will sample an indicator 𝐼 ∈

{𝑐𝑎𝑙𝑙, 𝑝𝑢𝑡}, the strike price 𝐾 ∈ [80,120], and the maturity 𝑇 =
𝑑

252
, 𝑑 ∈ {1, . . ,252}, in all cases with 

the uniform distribution. 

Sample model parameters 
option parameters

and market variables 
For 

Sample historical 
prices/returns

Calculate moments and 
other characteristics ( )

Calculate option price 
given 
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The risk-neutral parameters Θrn = 〈𝑉0, 𝜅, 𝜃𝑉, 𝜎𝑉 , 𝜌〉 of the Heston model are also sampled from the 

uniform distributions on intervals corresponding to the “normal” empirical values of the parameters 

as follows: 𝑉0 ∈ [0.052, 0.42], 𝜅 ∈ [0.3,1.3], 𝜃V ∈ [0.052, 0.42], 𝜎𝑉 ∈ [0.01,0.2], and 𝜌 ∈ [−0.9,0.1]. 

The parameters also need to satisfy the inequality 2𝜅𝜃𝑉 > 𝜎𝑉
2. For a sampled set of model parameters 

Θ𝑖 and option parameters 𝑂𝑃𝑖, the model option price is calculated as 𝑐𝑖 =  𝑓𝐻𝑀(Θ𝑖; 𝑂𝑃𝑖) where we 

implicitly set 𝜆𝑉 = 0 and the market variables 𝑆0 = 100, 𝑟 = 0 are fixed as explained above. For the 

purpose of direct calibration (Figure 3) and volatility feature pricing (Figure 4) a set of option prices 

𝑐𝑖𝑗 , 𝑗 = 1, … , 𝑚 needs to be calculated on a grid of option parameters (strike price and maturity) 

conditional on the sampled parameters Θ𝑖. 

For the purpose of the moment-based calibration (Figure 5) and pricing (Figure 6), NN models’ physical 

parameters Θ = {𝜃V,  𝜅, 𝜎𝑉 , 𝜌𝑆𝑉 , 𝜆𝑀 , 𝜆𝑉 , 𝑉0} need to be sampled. We will use the same uniform 

distributions for the option parameters and for the parameters 𝜅, 𝜃𝑉 , 𝜎𝑉, 𝜌 as above, and in addition 

sample the market price of risk 𝜆𝑀 ∈ [0.1,1.5], and the volatility premium parameter 𝜆𝑉 ∈ [−2,0.1].  In 

this case, we cannot independently sample the instantaneous variance  𝑉0 , since it has to be the last 

stochastic variance of the historical time series sampled according to (3). Here, we have to use a 

discretization based on a basic time step and a length of the time series (e.g. 252 daily returns). In 

order to initialize the series returns and stochastic volatilities, we need to sample 𝑉𝑖𝑛𝑖 ∈

[0.052, 0.42] and the last simulated variance value then defines 𝑉0. The historical return series will be 

used to calculate of set of moments, for example  variance, skewness, and kurtosis in the 10, 21, 63, 

126, and 252-day backward-looking time windows.  

Our basic training and testing datasets (generated by the same underlying process) will have 𝑁𝑡𝑟𝑎𝑖𝑛 =

10 000 and 𝑁𝑡𝑒𝑠𝑡 = 2 000 observations. Hence, the total will be 𝑁 = 𝑁𝑡𝑟𝑎𝑖𝑛 + 𝑁𝑡𝑒𝑠𝑡 = 12 000, but 

we will also experiment with larger datasets to analyze the impact of the dataset size on the 

performance of the NN estimation model. Similarly, our basic dataset for the moment-based pricing 

calibration will use 252 daily historical returns, but we will also experiment with higher frequencies, 

longer periods, and additional historical return characteristics (for example based on the concept of 

realized volatility).  

Note that the variables of the generated dataset can be used in the roles both of features and targets 

as indicated by Table 1. For example, the dataset with sampled model parameters, option prices, and 

historical moments can be used to train the calibration NN, where the vector of model parameters 

plays the role of the target, while in the case of the pricing NN the target is the option price (and the 

model parameters are not explicitly estimated by the NN).  

Table 1: Training dataset structure 

NN architecture Features Target 

Standard pricing model Model parameters, option parameters Option price 

Direct Calibration Option prices (grid) Model parameters 

Volatility feature pricing Option prices (grid), option parameters Option price 

Moments based calibration  Historical moments Model parameters 

Moments based pricing Historical moments, option parameters Option price 
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6. Synthetic Training and Testing Dataset Construction 

Before focusing on the empirical results of the moments-based calibration and pricing using NN, which 

is the main contribution of this paper, we will show some examples of the results of the two-step and 

direct calibration based on the option prices. 

6.1. Estimation Error Decomposition 

Table 2 shows in-sample (IS) performance in terms of the RMSE of the pricing NN (Figure 2) trained on 

a dataset with 10 000 observations (synthetically generated as explained in the previous section). In 

addition, we show out-of-sample (OOS) performance on the (2 000) observations not used for training 

at all. The RMSE can be compared to the spot price 𝑆0 = 100 or the strike price 𝐾 (around 100) or the 

average option price in the sample, which is around 7, and we can see that the best reported out-of-

sample RMSE is better than 0.2% of the average option price. It is interesting to see that the 

performance of the approximating NN dramatically improves when we add more neurons and hidden 

layers. Given the dataset with 10 000 observations, it seems that the NN with 3 hidden layers, each 

with 20 hidden neurons, provides almost optimal performance. The OOS performance is slightly 

improved when we increase the number of neurons in one layer to 30, but it should be noted that in 

this case there is a large difference between the reported IS and OOS performance, indicating 

increasing variance of the NN. The training time also increases substantially (since the number of 

weights in the NN with three hidden layers, each with 𝑛 neurons, is proportional to 𝑛2).  As discussed 

in Section 3, there is almost no irreducible error (depending on the quality of the numerical integration 

used in the HM valuation function), and so the key problem of the NN approximation is the variance 

and bias which can be reduced by generating larger and larger training datasets and applying a more 

and more complex NN.  

Table 2: Pricing NN performance with different number of neurons and hidden layers  

NN  # of neurons Iterations Training time RMSE (IS) RMSE (OOS) 

10 65 0:00:01 0.2018 0.2031 

20 181 0:00:05 0.0724 0.0840 

10+10 1000 0:00:23 0.0572 0.0591 

20+20 1000 0:02:35 0.0112 0.0139 

20+20+20 964 0:06:19 0.0077 0.0156 

30+30+30 1000 0:35:04 0.0026 0.0085 

Figure 8 shows the performance (measured in terms of MSE) of the 20+20+20 network during the 

training procedure, which stops when an optimum on the validation subsample is achieved. The right 

panel illustrates the relatively narrow error histogram for the training, validation and test subsamples 

(of the dataset with 10 000 observations). 
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Figure 8: Performance of the NN (20+20+20) during the training procedure (left) and the error histogram of the 
trained NN 

 

Figure 9 compares, for the sake of illustration, the Heston formula prices with the NN approximation 

for a call option depending on the strike prices and fixing the remaining (randomly selected) 

parameters, i.e. 𝑇 and Θ. The left panel visually indicates that there is almost no difference between 

the HM function and the NN approximation, but the right panel shows that the difference between 

the two functions is in the range -0.006 to 0.008 corresponding to the reported RMSE. 

Figure 9: A comparison between the Heston formula and NN approximated market values for call options with 
the strike price K=80,…,120 

  

6.2. Classical Calibration using an approximating NN  

To illustrate the calibration procedure in the two-step approach based on a trained approximating NN, 

we sample a vector HM parameters (from the distribution described in Section 5) and calculate (with 

the HM valuation function) a grid of option prices with strikes [90,95,100,105,110] and maturities [2W, 

1M, 2M, 6M, 9M]. In order to make the grid of prices more realistic, we add random errors in the range 

±0.5% (uniformly distributed) corresponding to market noise. We will assume that the grid represents 

a quoted volatility surface and perform the calibration procedure minimizing 

arg min
Θ

∑(𝑓(𝑂𝑃𝑖𝑗 , Θ) − 𝑐𝑖𝑗)
2

, 

where the valuation function is either the HM model function or the NN approximating function 

(trained as described above for the 20+20+20 network). 



 

15 

The NN based calibration converged relatively fast in approximately 1 min, showing RMSE = 0.44 with 

respect to the true parameters, while the HM function-based optimization took more than 17 min with 

only slightly better RMSE = 0.38. The calibration error (RMSE) with respect to the given grid of option 

prices was 0.13 for the NN calibration and 0.10 for the HM calibration. Figure 10 compares the true 

and the estimated parameters and indicates that the calibration error tends to be large, in particular 

for the leverage parameter 𝜌, the speed of reversion 𝜅, and the volatility of volatility 𝜎𝑉 . The price of 

volatility risk 𝜆𝑉 is not shown, since it is implicitly set at zero when the calibration is based on the 

option prices. However, it should be noted that the optimization procedure fits the option prices 

including the noise for which the original “true” parameters do not necessarily provide the best fit. In 

any case, there are surprisingly large differences between the calibration results based on the two 

methods.  

To conclude, the slightly lower precision of the NN based calibration seems to be compensated by its 

substantially better speed compared to the HM function-based calibration. Moreover, the precision of 

the NN can be further improved by generating a larger dataset and choosing a deeper NN as discussed 

above. 

 

Figure 10: A comparison between the true and calibrated parameters using the HM function and the NN 
approximation 

 

6.3. Direct Calibration 

To illustrate the direct calibration performance, we have sampled 10 000 + 2 000 times (in + out) on a 

set of HM parameters (training target) and a grid of 25 corresponding call option prices for the 

maturities (10,20, 40, 60, 180) days and strike prices (90, 95, 100, 105, 110) with the spot price set at 

100. Table 3 reports the calibration results in terms of the RMSE of the estimated parameters vs. the 

“true” parameters, and in terms of the pricing error when the estimated and “true” parameters are 

used to value the options on the grid. From both perspectives, the performance appears to be 

substantially better than the two-step calibration results shown above. However, the RMSE 

performance of the two-step approach and the reported NN calibration RMSE values cannot be directly 

compared, since in the two-step approach the option grid values included noise, while in Table 3 the 

RMSE is based on option grid values without any noise. When the comparison is done on a grid of 

“noisy” option values, then the performance is, in fact, similar.  

Creation of the training dataset takes substantially more time compared to the dataset for the pricing 

NN, since the number of options to be evaluated is 25 times greater. But this calculation and the NN 

training, which also takes some time (see Table 3) can be done off-line, while the evaluation of the 
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trained calibration NN itself is very fast. Overall, our empirical results indicate that the direct calibration 

approach should be preferred to the two-step calibration approach. 

Table 3: Direct calibration NN performance with different number of neurons and hidden layers 

NN  # of neurons Iterations 
Training 

time 

Parameter RMSE 

(IS) 

Parameter RMSE 

(OOS) 

Pricing RMSE 

(OOS) 

20 448 0:03:42 0.0520 0.0519 0.0811 

20+20 764 0:32:49 0.0087 0.0152 0.0496 

20+20+20 567 0:36:15 0.0060 0.0078 0.0364 

6.4. Moments Based Pricing 

Finally, we are going to present the empirical results of our proposed approach to the valuation of 

options using NN in a situation when market volatility (option) quotes are not available. Initially, we 

again use the same dataset with 10 000 + 2 000 (in + out) synthetically generated observations where 

the features are the selected historical moments, the (true) volatility risk premium, and option 

parameters. The only target is the option price. In the first empirical experiment, the moments are 

defined as described in Section 5, i.e. as variance, skewness, and kurtosis in the 10, 21, 63, 126 and 

252-day backward-looking time windows based on 252 daily returns (i.e., the number of features is 19 

including the price of volatility risk and option specifications). The results shown in Table 4 are 

promising, but certainly not as good as in the case of pricing using model parameters or parameters 

calibrated from the market option prices. It is interesting to note that the performance in terms of IS 

and OOS RMSE does not improve when we add more hidden layers and neurons. This could be 

explained by the irreducible error in the decomposition (2), due to the fact that the information 

content of the selected moments is limited and, in addition, contains the noise inherent to the 

synthetic data-generating process. 

Table 4: Moment based pricing NN performance with different number of neurons and hidden layers 

NN  # of neurons Iterations Training time RMSE (IS) RMSE (OOS) 

20 83 0:00:03 0.583 0.629 

20+20 26 0:00:04 0.579 0.617 

20+20+20 14 0:00:07 0.585 0.647 

The relatively promising performance can also be illustrated by the simple (Mincer-Zarnowitz) 

univariate regression where the “true” prices are explained by the estimated prices with R2 = 99.1% 

and RMSE = 0.6 (intercept -0.02, slope = 1.001) on the OOS dataset. See also Figure 11. 
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Figure 11: True (y-axis) versus estimated (x-axis) scatterplot 

 

In the following subsections, we will consider two possible ways to improve the performance. Firstly, 

we will assume that there is at least one available option quote which can be used as a feature of the 

NN. The assumption is that the option price implicitly improves  the model specification and, in 

addition, the price of volatility risk can be removed from the set of features, since it can be implied 

from the market option price. In the second direction, we will try to extend both the set of moments, 

in particular using the concept of realized volatility, and the size of the training dataset. 

6.5. Mixed Inputs Based Pricing 

A straightforward solution to the missing volatility premium problem is to estimate the premium on a 

related market (e.g.  the same or a similar product, or a different region in the case of energies). In this 

case, the model pricing function can be used, in particular if the estimation is off-line (assuming a 

constant volatility premium). Alternatively, if there are at least some option market quotes, we 

propose to use a mix of moments and available quotations. The second expected effect is a possible 

improvement in the approximating NN due to certain additional information contained in the option 

price. The results in Table 5 are based on the same dataset as for the moment-based pricing (i.e. 10 000 

training observations with 15 moments based on 252 daily returns) where the volatility premium is 

replaced with a single ATM 1M call option price. It is interesting to note that the performance in terms 

of RMSE improved by almost one third and, in addition, the “true” value of the volatility price of risk 

could be eliminated. Again, the performance does not improve with increased NN complexity, 

indicating that the key issue is still the information content of the input features. 

Table 5: Mixed input (moments and a market option price) based pricing NN performance  

NN  # of neurons Iterations Training time RMSE (IS) RMSE (OOS) 

20 27 0:00:01 0.427 0.435 

20+20 16 0:00:04 0.438 0.463 

20+20+20 17 0:00:18 0.416 0.477 

Figure 12 visually illustrates that the approximation quality of the option pricing function is similar to 

the case (pricing NN) when the model parameters are known. Regarding the Mincer-Zarnowitz 

regression, in this case R2 improves to 99.6% and RMSE to 0.43 on the OOS dataset. 
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Figure 12: A comparison between the Heston formula and the mixed input NN approximated market values for 
call options with the strike price K=80,…,120 

 

6.6. Improving the Performance of the Moment Based Pricing NN  

As discussed in Section 6.3, it seems that the main obstacles to the improvement of the performance 

of the approximating NN is the limited information content of the set of features, which causes a 

relatively large irreducible error, and possibly also the size of the training data, which causes a 

relatively large variance of the approximating model (see Section 3). The former hypothesis could be 

directly verified by comparing the results of the moment-based estimation of the parameters with 

Bayesian (MCMC) estimations. This is a possible direction of future research. Indirectly, the hypothesis 

can be confirmed by extending the set of moments with additional historical return series 

characteristics and comparing the results. 

We suggest improving the performance by using high-frequency returns, a longer historical time 

window and moments of daily realized variance time series approximating the series of latent 

stochastic variance. To calculate the realized variance (Andersen and Bollerslev, 1998), we use 10 min 

return data, which are in practice a reasonable choice due to the market microstructure noise. 

Specifically, the daily realized volatility will be calculated by the standard formula  

𝑅𝑉𝑑 = ∑ 𝑟𝑖
2

𝑖𝑑,2

𝑖=𝑖𝑑,1 

 

where 𝑟𝑖 = ln
𝑆𝑖

𝑆𝑖−1
  is the high-frequency asset return and the summation covers a daily period. The 

time series 𝑅𝑉𝑑 , 𝑑 = 1, … , 𝐷 can then be used to define moments characterizing the stochastic 

volatility equation (3). In addition, the last day realized variance is, in fact, a good proxy for the 

instantaneous latent variance 𝑉0. Therefore, we will use the high-frequency returns to calculate 

variance, skewness, kurtosis, and, in addition, the fifth moment in the backward-looking periods of 1, 

5, 20, 121, and 252*4 days extending the maximum historical period to 4 years, i.e. 𝐷 = 4 ∗ 252. The 

moment features of the set of 20 returns will, in addition, be enriched with the following 

characteristics: 

• the EWMA daily variance estimate based high-frequency returns with 𝜆 = 0.951/𝑚 where 𝑚 =

48 is the number of high-frequency periods in one trading day,  

• daily RV autocorrelations (with lags 1-4) serving as a proxy to estimate the speed of mean 

reversion 𝜅,  
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• the first five moments of the RV daily changes,  

• and the first five moments of the realized covariance between daily RV increments and the 

daily asset returns serving as a proxy for the leverage parameter 𝜌. 

Therefore, the total number of historical characteristics serving as features will be 35. In addition, as 

stated above, there will be the “true” price of volatility risk and the option parameters as 4 additional 

input features. We will test the performance of the NN with the extended set of features and trained 

on 10 000 observations (IS, with OOS performance calculated on an additional 2 000 observations), or 

alternatively on 40 000 observations (IS, and an additional 4 000 OOS observations). The results in 

Table 6 and Table 7 show that the performance in terms of RMSE has improved substantially compared 

to Table 4 and bears comparison with the direct calibration performance (Table 3) based on a grid of 

option market prices. Note that the performance does not improve significantly when we add more 

hidden layers and neurons. In our opinion, the NN model becomes applicable for the valuation of 

options on non-liquid markets where bid-ask spreads, if any, are by definition largely of low liquidity. 

It should also be noted that the training procedure is very fast, taking at most minutes, and the 

valuation itself can be done in fractions of a second. On the other hand, the creation of the full training 

dataset, which can be done off-line, is, of course, computationally costlier, taking several hours on an 

i7 Core 3GHz computer (in Matlab). 

Table 6: Moment based pricing NN performance, extended set of features, dataset 10 000 + 2 000 

NN  # of neurons Iterations Training time RMSE (IS) RMSE (OOS) 

20 41 0:00:07 0.229 0.250 

20+20 26 0:00:06 0.211 0.243 

20+20+20 14 0:00:11 0.213 0.242 

 

Table 7: Moment based pricing NN performance, extended set of features, dataset 40 000 + 4 000 

NN  # of neurons Iterations Training time RMSE (IS) RMSE (OOS) 

20 235 0:03:27 0.216 0.219 

20+20 48 0:01:34 0.206 0.210 

20+20+20 21 0:01:15 0.207 0.221 

All Table 7 models based on the larger dataset show excellent performance in the Mincer-Zarnowitz 

regression on the OOS sample. For example, in the case of the 20+20 model, the true prices are 

explained by the estimated prices with R2= 99.9% and RMSE = 0.21 (intercept -0.003 not significantly 

different from 0 and slope = 0.9999 not significantly differing from 1, see also Figure 13). 
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Figure 13: True (y-axis) versus estimated (x-axis) scatterplot 

 
For the sake of completeness, Table 8 reports the performance of the mixed input pricing NN, where 

we use the extended set of moments and an option price (ATM with one-month maturity). On the 

other hand, the “true” price of volatility risk is removed from the features vector as in Section 6.5. The 

training dataset is the larger one with 40 000 observations, and so the results could be compared to 

Table 7. It is interesting to note that in this case (compared to Section 6.5), the performance of the 

mixed input pricing NN is not better than the performance of the purely moment-based pricing NN. It 

appears that the loss of information due to the removal of the price of volatility risk from the input is 

not outweighed by adding the option market price to the features. 

Table 8: Mixed input (moments and a market option price) based pricing NN performance with an extended 
set of moments and a large training dataset (40 000 + 4 000) 

NN # of neurons Iterations Training time RMSE (IS) RMSE (OOS) 

20 95 0:01:37 0.342 0.355 

20+20 21 0:00:27 0.341 0.354 

20+20+20 18 0:00:43 0.339 0.389 

6.7. Moment Based Direct Calibration 

Finally, we can also look at the moments-based direct calibration NN, where the option prices on the 

input are replaced by a set of moments. It is interesting to note that the pricing performance in terms 

of the RMSE of the moments-based calibration with the basic dataset reported in Table 9 is better than 

the performance of the pricing NN in Table 4. On the other hand, with the extended set of features 

and the larger training dataset, the performance improves (Table 10), but not as much as in the case 

of the pricing NN (Table 7). The pricing performance again does not improve with the NN complexity. 

In fact, it turns out to be the best for the one hidden layer NN with 20 neurons. Figure 14 shows that 

the parameters 𝜅 and 𝜌 have the largest contribution to the overall parameter RMSE.  

Table 9: Moment based calibration NN performance (basic set of features, 10 000 training observations) 

NN # of neurons Iterations Training time Parameter RMSE (IS) Parameter RMSE (OOS) Pricing RMSE (OOS) 

20 14 0:00:03 0.178 0.177 0.423 

20+20 12 0:00:09 0.178 0.178 0.377 
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20+20+20 11 0:00:18 0.178 0.178 0.437 

 

Table 10: Moment based calibration NN performance (extended set of features, 40 000 training observations) 

NN # of neurons Iterations Training time Parameter RMSE (IS) Parameter RMSE (OOS) Pricing RMSE (OOS) 

20 17 0:01:00 0.174 0.173 0.273 

20+20 21 0:03:17 0.173 0.173 0.296 

20+20+20 21 0:05:20 0.173 0.172 0.356 

Figure 14: OOS RMSE for individual HM parameters (moment based NN calibration, extended set of features, 
40 000 training observation, one hidden layer with 20 neurons) 

 

7. Conclusion 

The applications of NN in option pricing are driven by several factors. Firstly, the valuation of (exotic) 

options based on advanced stochastic models necessarily involves the problem of calibration, which is 

often computationally too slow to be used for real-time trading. This problem arises when the 

valuation function is not analytical and involves a computationally intensive numerical procedure such 

as a Monte Carlo simulation. Secondly, the valuation of options and other derivatives on the OTC (over-

the-counter) markets involves calculation of the credit valuation adjustment (CVA), or other analogous 

adjustments (XVA), which is again usually too slow if the valuation function is not very fast. This 

problem can be dealt with if the NN approximates the pricing function well, or by performing the 

calibration exercise directly. 

Our contribution is, in addition, motivated by the situation of a non-liquid option market where the 

normal inputs of the calibration procedure, i.e. plain vanilla option prices (implied volatility surface) 

are not available, but we still need to price an option or calibrate a stochastic model. Our proposal is 

to train an NN on a synthetically generated dataset where we not only sample certain model 

parameters and evaluate options with randomly selected parameters, but, in addition, simulate 

backward- looking time series of returns, stochastic volatilities, and possibly other stochastic variables 

too. This approach allows us to train an NN that can estimate model parameters from the time series 

of historical returns. We have empirically tested this approach with the Heston Model and feed-

forward neural networks. The results of the empirical experiments show that the moment-based 

pricing and calibration NNs can be applicable in practice with a performance lower than, but still 

comparable to the option-based NNs. We have shown that the performance (in terms of RMSE) can 



 

22 

be substantially improved when high-frequency historical data, allowing us to apply the concept of 

realized volatility, are available. 

However, there are many possible directions of further research. It appears that the irreducible error 

(the limited “information content” of a historical return series with respect to unknown model 

parameters) is the main limitation of the moment-based pricing and calibration NN applications. This 

hypothesis can be verified, or more precisely analyzed, by comparing the NN errors with a Bayesian 

approach such as MCMC or particle filter estimations. Furthermore, other types of NN or ML 

algorithms could be tested. For example, the LSTM (long-short-term-memory) or convolutional (CNN) 

networks allow us to process the full return time series on the input instead of designing a limited set 

of moments or other characteristics that are needed for a feed-forward NN. Last but not least, the 

numerical testing should be implemented for more advanced models that capture not only the 

stochastic volatility, but also other stochastic variables, such as the convenience yield, or the term 

structure of forward prices that should be considered on the commodity markets.  
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