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Abstract: The price clustering phenomenon manifesting itself as an increased occurrence of specific
prices is widely observed and well-documented for various financial instruments and markets. In the
literature, however, it is rarely incorporated into price models. We consider that there are several
types of agents trading only in specific multiples of the tick size resulting in an increased occurrence
of these multiples in prices. For example, stocks on the NYSE and NASDAQ exchanges are traded
with precision to one cent but multiples of five cents and ten cents occur much more often in prices.
To capture this behavior, we propose a discrete price model based on a mixture of double Poisson
distributions with dynamic volatility and dynamic proportions of agent types. The model is esti-
mated by the maximum likelihood method. In an empirical study of DJIA stocks, we find that higher
instantaneous volatility leads to weaker price clustering at the ultra-high frequency. This is in sharp
contrast with results at low frequencies which show that daily realized volatility has a positive impact
on price clustering.

Keywords: High-Frequency Data, Price Clustering, Generalized Autoregressive Score Model, Double
Poisson Distribution.
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1 Introduction

Over the last two decades, there has been a growing interest in modeling prices at the highest possible
frequency which reaches fractions of a second for the most traded assets. The so-called ultra-high-
frequency data possess many unique characteristics which need to be accounted for by econometricians.
Notably, the prices are irregularly spaced with discrete values. Other empirical properties of high-
frequency prices which can be incorporated into models include intraday seasonality, jumps in prices,
price reversal and the market microstructure noise. For related models, see, e.g. Russell and Engle
(2005), Robert and Rosenbaum (2011), Barndorff-Nielsen et al. (2012), Shephard and Yang (2017),
Koopman et al. (2017), Koopman et al. (2018) and Buccheri et al. (2020).

We focus on one particular empirical phenomenon observed in high-frequency prices — price clus-
tering. In general, price clustering refers to an increased occurence of some values in prices. A notable
type of price clustering is an increased occurrence of specific multiples of the tick size, i.e. the minimum
price change. For example, on the NYSE and NASDAQ exchanges, stocks are traded with precision
to one cent but multiples of five cents (nickels) and ten cents (dimes) tend to occur much more often
in prices. In other words, while one would expect the distribution of the second digit to be uniform,
the probability of 0 and 5 is actually higher than 0.1 for each. This behavior can be captured by
some agents trading only in multiples of five cents and some only in multiples of ten cents. It is well
documented in the literature that this type of price clustering is present in stock markets (see, e.g. Lien
et al., 2019), commodity markets (see, e.g. Bharati et al., 2012), foreign exchange markets (see, e.g.
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Sopranzetti and Datar, 2002) and cryptocurrency markets (see, e.g. Urquhart, 2017). Moreover, price
clustering does not appear only in spot prices but in futures (see, e.g. Schwartz et al., 2004), options
(see, e.g. ap Gwilym and Verousis, 2013) and swaps (see, e.g. Liu and Witte, 2013) as well. From a
methodological point of view, almost all papers on price clustering deal only with basic methods and
descriptive statistics of the phenomenon. The only paper, to our knowledge, that incorporates price
clustering into a price model is the recent theoretical study of Song et al. (2020) which introduced
the sticky double exponential jump diffusion process to assess the impact of price clustering on the
probability of default.

Our goal is to propose a discrete dynamic model relating price clustering to the distribution of
prices and to study the high-frequency behavior of price clustering. We take a fundamentally very
different approach than Song et al. (2020) and incorporate the mechanism of an increased occurrence
of specific multiples of the tick size directly into the model. This allows us to treat the price clustering
phenomenon as dynamic and driven by specified factors rather than given. We also operate within the
time series framework rather than the theory of continuous-time stochastic processes. In contrast to the
existing literature on price modeling, we do not model log returns or price differences but rather prices
themselves. Prices are naturally discrete and positive. When represented as integers, they also exhibit
underdispersion, i.e. the variance lower than the mean. To accommodate for such features, we utilize
the double Poisson distribution of Efron (1986). It is a less known distribution as noted by Sellers and
Morris (2017) but was utilized in the context of time series by Heinen (2003), Xu et al. (2012) and
Bourguignon et al. (2019). Modeling prices directly enables us to incorporate price clustering in the
model. Specifically, we consider that prices follow a mixture of several double Poisson distributions
with specific supports corresponding to agents trading in different multiples of the tick size. This
mixture distribution has a location parameter, a dispersion parameter and parameters determining
portions of trader types. In our model, we introduce time variation to all these parameters. We
consider the location parameter to be equal to the last observed price resulting in zero expected returns.
For the dispersion parameter, we employ dynamics in the fashion of the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Bollerslev (1986). Specifically, we utilize the class
of generalized autoregressive score (GAS) models of Creal et al. (2013) and Harvey (2013) which allows
to base dynamic models on any underlying distribution. In the high-frequency literature, the GAS
framework was utilized by Koopman et al. (2018) for discrete price changes and Buccheri et al. (2020)
for log prices. To account for irregularly spaced observations, we include the last trade duration as
an explanatory variable similarly to Engle (2000). Finally, we relate the trader portion parameters to
the volatility process and other variables such as the price, the last trade duration and the volume.
The resulting observation-driven model is estimated by the maximum likelihood method.

In the empirical study, we analyze 30 Dow Jones Industrial Average (DJIA) stocks in the first half
of 2020. We first focus on price clustering from a daily perspective which is a common approach in
the price clustering literature. Using a panel regression with fixed effects, we find a positive effect
of daily volatility measured by realized kernels of Barndorff-Nielsen et al. (2008) on price clustering.
This finding is in line with the results of ap Gwilym et al. (1998); Davis et al. (2014); Box and Griffith
(2016); Hu et al. (2017); Blau (2019); Lien et al. (2019) among others. Next, we estimate the proposed
high-frequency price model and arrive at a different conclusion — the instantaneous volatility obtained
by the model has a negative effect on price clustering. The main message of the empirical study is
therefore that the degree of aggregation plays a pivotal role in the relation between price clustering and
volatility. While high daily realized volatility correlates with high price clustering, high instantaneous
volatility has the opposite effect. The other explanatory variables have the expected effect in both the
daily and high-frequency cases — the volume has a positive effect on price clustering while the price
and the last trade duration are insignificant.

The rest of the paper is structured as follows. In Section 2, we review the literature dealing
with high-frequency price models and price clustering. In Section 3, we propose the dynamic model
accommodating for price clustering based on the double Poisson distribution. In Section 4, we use
this model to study determinants of price clustering in high-frequency stock prices. We conclude the
paper in Section 5.



2 Literature Review

2.1 Some High-Frequency Price Models

In the literature, several models addressing specifics of ultra-high-frequency data have been proposed.
One of the key issues is irregularly spaced transactions and discreteness of prices. The seminal study
of Engle and Russell (1998) proposed the autoregressive conditional duration (ACD) model to capture
the autocorrelation structure of trade durations, i.e. times between consecutive trades. Engle (2000)
combined the ACD model with the GARCH model and jointly modeled prices with trade durations.
Russell and Engle (2005) again modeled prices jointly with trade durations but addressed discreteness
of prices and utilized the multinomial distribution for price changes.

Another approach is to model the price process in continuous time. Robert and Rosenbaum (2011)
considered that the latent efficient price is a continuous Itd6 semimartingale but is observed at the
discrete grid through the mechanism of uncertainty zones. Barndorff-Nielsen et al. (2012) considered
the price process to be discrete outright and developed a continuous-time integer-valued Lévy process
suitable for ultra-high-frequency data. Shephard and Yang (2017) also utilized integer-valued Lévy
processes and focused on frequent and quick reversal of prices.

Transaction data at a fixed frequency can also be analyzed as equally spaced time series with
missing observations. In this setting, Koopman et al. (2017) proposed a state space model with
dynamic volatility and captured discrete price changes by the Skellam distribution. Koopman et al.
(2018) continued with this approach and modeled dependence between discrete stock price changes
using a discrete copula. Buccheri et al. (2020) also dealt with multivariate analysis and proposed a
model for log prices accommodating for asynchronous trading and the market microstructure noise.
The latter two papers utilized the GAS framework.

2.2 Price Clustering

The first academic paper on price clustering was written by Osborne (1962), where the author described
the price clustering phenomenon as a pronounced tendency for prices to cluster on whole numbers,
halves, quarters, and odd one-eighths in descending preference, like the markings on a ruler. Since
then, there have been many studies focusing on this phenomenon — from Niederhoffer (1965) to very
recent papers of Li et al. (2020), Song et al. (2020), and Das and Kadapakkam (2020) — showing that
price clustering is remarkably persistent in time and across various markets.

Song et al. (2020) pointed out that, however, all studies are entirely focused on empirically exam-
ining price clustering in different financial markets. Except for the purely theoretical paper of Song
et al. (2020) proposing the sticky double exponential jump-diffusion process to analyze the probability
of default for financial variables, the studies related to price clustering are based on basic general
methods and do not aim to incorporate the phenomenon into the dynamic price model.

The prevalent approach to price clustering examination is a linear regression model estimated by
ordinary least squares (OLS) method. Ball et al. (1985), Kandel et al. (2001), and from the recent
literature Urquhart (2017), Hu et al. (2019) and Li et al. (2020), used the classical regression with
dummy variables to estimate frequency of each level of rounding. The vast of the literature regressed
price clustering on explanatory variables such as volatility and trade size, where price clustering is
defined as the excess occurrence of multiples of nickles or dimes (see, e.g. Schwartz et al., 2004
and Tkenberry and Weston, 2008 followed by Chung and Chiang, 2006, Brooks et al., 2013, and Hu
et al., 2017) or simply their frequency (see, e.g. Palao and Pardo, 2012 and Davis et al., 2014).
However, different definitions of the dependent variable representing price clustering can be found in
the literature. Baig et al. (2019) defined the clustering as a sum of round clustering at prices ending by
digit 0 and strategic clustering measured as a number of trades which decimals are equal to 01 or 99.
ap Gwilym and Verousis (2013) defined the dependent variable as the percentage of price observations
at integers, whereas ap Gwilym et al. (1998) estimated the percentage of trades that occur at an odd
tick. Ahn et al. (2005) regressed abnormal even price frequencies in transaction and quote prices on
the firm and trading characteristics, and similarly, Chiao and Wang (2009) performed the analysis on
the limit-order data. Cooney et al. (2003) estimated cross-sectional regressions of the difference in the



percentage of even and odd limit orders on stock price and proxies for investor uncertainty.

Several extensions of the OLS method were employed to overcome certain issues. Verousis and
ap Gwilym (2013) and Mishra and Tripathy (2018) argued that one encounters a simultaneity issue
between trade size and price clustering when striving to examine a causal relationship between them.
Hence, Verousis and ap Gwilym (2013) followed by Mishra and Tripathy (2018) used the two-stage
least squares (2SLS) method. Moreover, to reflect the endogeneity of quote clustering in the spread
model and the endogeneity of the spread in the quote clustering model, Chung et al. (2004, 2005)
estimated a structural model using three-stage least squares (3SLS) method. Meng et al. (2013) used
the 3SLS method to formally examine the hypothesis of a substitution effect between price clustering
and size clustering in the CDS market. Finally, Mbanga (2019) estimated robust regressions that
eliminate gross outliers to examine the day-of-the-week effect in Bitcoin price clustering.

Another direction arises from the need to analyze panel data. The prevailing approach is a fixed
effects regression. Das and Kadapakkam (2020) included both firm and time fixed effects, whereas
Box and Griffith (2016) included fixed effects only for time and report that once they also included
firm fixed effects, the results remained unchanged. Blau, 2019 and Blau and Griffith (2016) included
month and year fixed effects respectively, and used robust standard errors that account for clustering
across both the cross-sectional observations and time-series observations. On the other hand, Ohta
(2006) picked random effects model over the fixed effects model based on the results from the Hausman
specification test.

A substantial part of the literature models price clustering as a binary variable. For that case,
the straightforward approach is to use the logit or probit model. From one of the first papers using
logistic regression to analyze price clustering, Ball et al. (1985) modeled three dependent variables
taking value 1 if the price is rounded to the whole dollar, half-dollar, or quarter, respectively. Christie
and Schultz (1994) estimated logistic regressions that predict the probability of a firm being quoted
using odd eighths. Aitken et al. (1996) employed multivariate logistic regression to model three
binary dependent variables that are equal to one if the final digit is 0; 0 or 5; and 0, 2, 4, 6, or 8 (even
numbers), respectively. Brown and Mitchell (2008) examined the influence of Chinese culture on price
clustering by logistic regressions where a binary dependent variable is equal to 1 if the last sale price
ends in 4 and 0 if it ends in 8 since many Chinese consider the number 8 as lucky while 4 is considered
as unlucky. From the literature employing probit models, Kahn et al. (1999) analyzed the propensity
to set retail deposit interest rates at integer levels and Sopranzetti and Datar (2002) analyzed the
propensity for exchange rates to cluster on even digits. Moreover, Capelle-Blancard and Chaudhury
(2007) models a binary dependent variable that is equal to one if the transaction price ends with 00,
whereas Liu (2011) and Narayan and Smyth (2013) set the variable equal to one if the price ends at
either 0 or 5, and 0 otherwise. Alexander and Peterson (2007) followed by Lien et al. (2019) used a
bivariate probit model to take into account the dependence between price and trade-size clustering.

Finally, Blau (2019) estimated a vector autoregressive process and examined the impulses of price
clustering in response to an exogenous shock to investor sentiment. Besides the classical regression
approaches, Harris (1991) and Hameed and Terry (1998) analyzed the cross-sectional data by static
discrete price model.

To the best of our knowledge, the literature still lacks a discrete dynamic model to study the
high-frequency behavior of the price clustering. Thus, in the next section, we propose a novel model
which models high-frequency prices directly at the highest possible frequency and allows us to study
the main drivers of price clustering such as price, volatility, volume, and trading frequency in the form
of trade durations.

3 Dynamic Price Clustering Model

3.1 Double Poisson Distribution

Let us start with the static version of our model for prices. In the first step, we transform the
observed prices to have integer values. For example, on the NYSE and NASDAQ exchanges, the
prices are recorded with precision to two decimal places and we therefore multiply them by 100 to



obtain integer values. The minimum possible change in the transformed prices is 1. Empirically,
the transformed prices exhibit strong underdispersion, i.e. the variance lower than the mean. In our
application, the transformed prices are in the order of thousands and tens of thousands while the price
changes are in the order of units and tens. We therefore need to base our model on a count distribution
allowing for underdispersion. For a review of such distributions, we refer to Sellers and Morris (2017).
Although not without its limitations, the double Poisson distribution is the best candidate for our
case as the alternative distributions have too many shortcomings. For example, the condensed Poisson
distribution is based on only one parameter, the generalized Poisson distribution can handle only
limited underdispersion and the gamma count distribution as well as the Conway—Maxwell-Poisson
distribution do not have the moments available in a closed form.

The double Poisson distribution was proposed in Efron (1986) and has a location parameter p > 0
and a dispersion parameter a. We adopt a slightly different parametrization than Efron (1986) and
use the logarithmic transformation for the dispersion parameter making « unrestricted. For a = 0,
the distribution reduces to the Poisson distribution. Values o > 0 result in underdispersion while
values a < 0 result in overdispersion. Let Y be a random variable and y an observed value. The
probability mass function is given by
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where C'(p, «) is the normalizing constant given by

> yy /,L ey e a «
Clua) =) "1 () er ey, (2)
par LN

The log likelihood for observation y is then given by
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Unfortunately, the normalizing constant is not available in a closed form. However, as Efron (1986)
shows, it is very close to 1 (at least for some combinations of 1 and «) and can be approximated by
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Zou et al. (2013) notes that approximation (4) is not very accurate for low values of the mean and
suggest approximating the normalizing constant alternatively by cutting off the infinite sum, i.e.
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where m should be at least twice as large as the sample mean. In our case of high mean, approximation
(4) is sufficient while approximation (5) would be computationally very demanding and we therefore
resort to the former one. The expected value and variance can be approximated by

E[Y] ~ pu, var[Y] ~ pe™ . (6)

The score can be approximated by
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3.2 Mixture Distribution for Price Clustering

Next, we propose a mixture of several double Poisson distributions corresponding to trading in different
multiples of tick sizes accommodating for price clustering. We consider that there are three types of
traders — one who can trade in cents, one who can trade only in multiples of 5 cents and one who can
trade only in multiples of 10 cents. In Appendix A, we treat a more general case with any number
of trader types and tick size multiples. The distribution of prices corresponding to each trader type
is based on the double Poisson distribution modified to have support consisting only of multiples of
k € {1,5,10} while keeping the expected value E[Y] ~ u and the variance var[Y] ~ pe™® regardless of
k. For a detailed derivation of the distribution, see Appendix A. The distribution of prices for trader
type k € {1,5,10} is given by
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where DP denotes the double Poisson distribution and I{k | y} is equal to 1 if y is divisible by &
and 0 otherwise. Note that for £k = 1, it is the standard double Poisson distribution. Finally, the
distribution of all prices is the mixture
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where the parameter space is restricted by pu > 0, 1 > 0, @5 > 0, p19 > 0 and ¢1 + @5 + @10 = 1.
Parameters ¢y, k € {1,5,10}, are the portions of trader types and parameters 1 with o have the same
interpretation as in the double Poisson distribution. The log likelihood for observation y is given by
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Note that the last logarithm in (11) is not dependent on parameters p and « besides the normalizing
constant making the approximation of the score quite simple. Additionaly, parameters 1, @5 and
10 appear only in the last logarithm in (11) making the approximation of the score for parameters
and « independent of parameters 1, 5 and p19. The approximations of the expected value and the
variance as well as the score and the Fisher information for the parameters p and « of the mixture
distribution are therefore the same as for the regular double Poisson distribution presented in (6),
(7) and (8) respectively when assuming C(u/k,ka) = 1 . Figure 1 illustrates the probability mass
function of the mixture distribution.

3.3 Dynamics of Time-Varying Parameters

Finally, we introduce time variation into parameters u, o, @1, 5, v10. We denote the random prices
as ¥Y; € Ny, t = 1,...,n and the observed values as y; € Ng, t = 1,...,n. We also utilize observed
trade durations z; € RT, ¢t =1,...,n and observed volumes v; € R, ¢t =1,...,n. We assume that Y;
follow the mixture double Poisson distribution proposed in Section 3.2 with time-varying parameters
ey Qs 16, 5, and @10 The dynamics of the location parameter p; is given by

Mt = Yt—1. (12)

This means that the expected value of the price is (approximately) equal to the last observed price,
i.e. the expected value of the return is zero. This is a common assumption for high-frequency returns
(see, e.g. Koopman et al., 2017).

For the dynamics of the dispersion parameter «a;, we utilize the generalized autoregressive score
(GAS) model of Creal et al. (2013), also known as the dynamic conditional score (DCS) model by
Harvey (2013). The GAS model is an observation-driven model providing a general framework for
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Figure 1: Illustration of the probability mass function for the mixture double Poisson distribution
with parameters p = 10013 (left plot), p = 10005 (right plot), a = 7, ¢1 = 0.95, ¢5 = 0.02 and
©10 = 0.03. The prices are reported in the original form with two decimal places.

modeling time-varying parameters for any underlying probability distribution. It captures dynamics of
time-varying parameters by the autoregressive term and the score of the conditional density function.
Blasques et al. (2015) investigated information-theoretic optimality properties of the score function and
showed that only parameter updates based on the score will always reduce the local Kullback—Leibler
divergence between the true conditional density and the model-implied conditional density. Creal
et al. (2013) suggested to scale the score based on the Fisher information. As the Fisher information
for the parameter o is constant in our case, the score is already normalized and we therefore omit
the scaling. Using (7) and (12), we let the dispersion parameter «; follow the recursion
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where c is the constant parameter, b is the autoregressive parameter, a is the score parameter and
d is the duration parameter. This volatility dynamics corresponds to the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Bollerslev (1986). Similarly to Engle (2000), we also
include the preceding trade duration z; as an explanatory variable to account for irregularly spaced
observations. To prevent extreme values of durations, we use the logarithmic transformation.
The portions of trader types are driven by process

ne = fne—1 + g1 In(pe) + g2 (In(pe) — ) + g3 In(2e) + gaIn(vy), (14)

where f is the autoregressive parameter, g; is the parameter for the logarithm of the expected price,
go is the parameter for the logarithm of the variance of the price process e~ g3 is the parameter
for the logarithm of the preceding trade duration, and g4 is the parameter for the logarithm of the
volume v;. The portions of trader types are then standardized as

e’ B hs _ h1o
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where hs > 0 and hig > 0 are parameters capturing representation of 5 and 10 trader types. The
model can be straightforwardly extended to include additional explanatory variables in (13) and (14).

P1t = (15)

3.4 Maximum Likelihood Estimation

The proposed model based on the mixture distribution for price clustering (10) with dynamics given
by (12), (13) and (15) can be straightforwardly estimated by the conditional maximum likelihood



method. Let 6 = (¢,b,a,d, f, 91,92, 93, 94, h5, h1o)" denote the static vector of all parameters. The
parameter vector @ is then estimated by the conditional maximum likelihood

n
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where £(yy; e, o, 914, 954, P10¢) is given by (11).

For the numerical optimization in the empirical study, we utilize the PRincipal AXIS algorithm
of Brent (1972). To improve numerical performance, we standardize the explanatory variables to unit
mean. We also run the estimation procedure several times with different starting values to avoid local
maxima.

4 Empirical Results

4.1 Data Sample

The empirical study is conducted on transaction data extracted from the NYSE TAQ database which
contains intraday data for all securities listed on the New York Stock Exchange (NYSE), American
Stock Exchange (AMEX), and Nasdaq Stock Market (NASDAQ). We analyze 30 stocks that form the
Dow Jones Industrial Average (DJIA) index in June 2020. The extracted data span over six months
from January 2 to June 30, 2020, except for Raytheon Technologies (RTX)! for which the data are
available from April 3, 2020.

We follow the standard cleaning procedure for the NYSE TAQ dataset described in Barndorff-
Nielsen et al. (2009) since data cleaning is an important step of high-frequency data analysis (Hansen
and Lunde, 2006). Before the standard data pre-processing is conducted, we delete entries that are
identified as preferred or warrants (trades with the non-empty suffix indicator). Then we follow a
common data cleaning steps and discard (i) entries outside the main opening hours (9:30 — 16:00), (ii)
entries with the transaction price equal to zero, (iii) entries occurring on a different exchange than
it is primarily listed, (iv) entries with corrected trades, (v) entries with abnormal sale condition, (vi)
entries for which the price deviated by more than 10 mean absolute deviations from a rolling centered
median of 50 observations, and (vi) duplicate entries in terms of the time stamp. In the last step,
we remain the entry with mode price instead of the originally suggested median price due to avoiding
distortion of the last decimal digit of prices.

The first and last step has a negligible impact on our data and steps ii, iv, and vi have no impact
at all. However, the third step causes a large deletion of the data which is, however, in line with
Barndorfl-Nielsen et al. (2009). The basic descriptive statistics after data pre-processing are shown in
Appendix B. Number of observations ranges from 216 618 (TRV) to 3099279 (MSFT). Price clustering
in terms of the excess occurrence of multiples of five cents and ten cents in prices ranges from 1.45
% (KO) to 11.52 % (BA). First, we analyze the price clustering using a common approach of fixed
effects model on daily data in Section 4.2 to investigate whether the results for our dataset are in line
with the existing literature. Then, we estimate the proposed dynamic price model in Section 4.3.

4.2 Analysis Based on Daily Data

In this section, we investigate the main determinants of price clustering for which pervasive evidence is
documented in the literature, namely price, volatility, trading frequency (which we measure in terms
of trade durations), and volume. We use a panel regression with fixed effects to take into account the
unobserved heterogeneity in both dimensions — stocks and days.

Let us define price clustering p;; as the excess relative frequency of multiples of five cents and ten
cents in prices of stock ¢ at day ¢. We model p;; as

Pig =i + 0+ BrIn(f; ;) + BoIn(@i) + B3In(Zir) + BaIn(Diy) + iy, (17)

!The RTX company results from the merge of the United Technologies Corporation and the Raytheon Company on
April 3, 2020.



where «; is a stock specific effect for the stock 4, d; is a time effect for day ¢, and €; ¢ is the error term.
Parameters 1 — 84 corresponds to logarithmic explanatory variables, where 1z, , is an average price,
Zit is an average duration and 7;; is an average volume, where all averages are calculated for each
stock i at each day t. Daily volatility @; ; is estimated by realized kernel estimator of Barndorff-Nielsen
et al. (2008). We use Parzen kernel as suggested by Barndorff-Nielsen et al. (2009). See Holy and
Tomanova (2021) for a comprehensive overview of quadratic covariation estimators.

Table 1 reports estimated coefficients of three variants of the fixed effects model. The first variant
models price clustering on price, volatility and duration, i.e. model in (17) where volume is skipped.
The second model considers only the price, duration and volume as the explanatory variables, and the
third one is the full model in (17). We test the significance of the estimated coefficients using robust
standard errors for which observations are clustered in both dimensions to account for serial as well
as cross-sectional correlation. The results show that only volatility and volume are significant drivers
of the price clustering in the full model (Model IIT). However, once the volatility is dropped from the
model, the average daily duration becomes highly significant (Model II). A similar result applies for
the price (Model I) which becomes highly significant once the volume is dropped from the full model.
For illustration, Figure 2 shows fitted lines from univariate regressions with stock specific effects? for
two stocks traded on NASDAQ — Apple Inc. (AAPL) and Microsoft (MSFT) — and two stocks traded
on NYSE — Boeing (BA) and Visa Inc. (V).

Table 1: Estimated coefficients and robust standard errors of models with fixed effects for stocks and
days. Label I refers to the model in (17) for which the volume parameter 84 = 0; II to the model in
(17) for which the volatility parameter 2 = 0; III to the full model in (17).

Variable I II IIT

price —1.7014*** —0.8067 —0.1245
(0.5469) (0.6615) (0.5323)

volatility 0.5900*** 0.7008***
(0.1901) (0.1622)

duration —0.0973 —0.4640*** —0.0069
(0.1672) (0.1347) (0.1739)

volume 3.7544*** 3.9557***

(0.4869) (0.5025)

*p<0.05; *p<0.01; ***p<0.001

4.3 High-Frequency Analysis

Let us analyze the price clustering phenomenon at the highest possible frequency. First, we take a
brief look at the relation between the individual explanatory variables and price clustering. We focus
on the BA stock as its price clustering is the most pronounced. Figure 3 shows the average expected
price, the average instantaneous variance obtained from the dynamic model, the average duration
preceding the trade, and the average volume broken down by the second decimal of the price for the
BA stock. We can clearly see that for prices ending with 0 and 5, the average variance and the average
trade duration is much lower than for the other digits while the average volume is much higher. Note
that succeeding durations show very similar behavior to preceding durations suggesting that price
clustering tends to occur when trading is more intense.

2Time effects are dropped for better visibility which does not alter the main result.
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Next, we estimate three versions of the proposed price clustering model for each of the 30 stocks.
In the first version, we assume that there is no price clustering and set f = g1 = ¢go =93 = g4 = hs =
hip = 0. In the second version, we set only f = g1 = g2 = g3 = g4 = 0 and assume that there is
price clustering present but is constant over time and does not depend on any variables. The third
version is the dynamic model presented in Section 3.3 without any restrictions. We report the average
log-likelihood and the Akaike information criterion (AIC) of the models in Table 2. We can see that
adding price clustering to the model and subsequently adding dynamics to price clustering is very
much worth of the extra few parameters as AIC is distinctly the lowest for the dynamic model for all
stocks.

From now on we focus on the model with dynamic price clustering. Table 3 reports the estimated
coefficients. For all stocks, the coefficients in the volatility process ¢, b, a, and d have the same signs
and fairly similar values demonstrating the robustness of the model. Parameter d is negative, which
means that with longer durations, dispersion parameter oy is lower and the instantaneous variance
e exp(—ay) is higher. We attribute this behavior to the presence of a large amount of extremely short
durations associated with small price changes. Note that for example, the BA stock has 50 percent of
durations shorter than 0.1 seconds and 19 percent shorter than 0.0001 seconds. Engle (2000) observed
the opposite relation between trade durations and volatility but based his results on data with a much
lower frequency and without durations shorter than 1 second. This might indicate a change in the
data structure over the years and a complex non-linear relation between trade durations and volatility.
This topic is, however, beyond the scope of this paper.

Regarding the dynamics of price clustering, the autoregressive parameter f is stable across all
stocks. The parameter for the expected price g; significantly varies for different stocks suggesting its
low informative value. This is in line with the daily analysis in which prices were found insignificant.
The parameter for the instantaneous variance gy is positive for all stocks. The portion of one cent
traders is therefore higher with higher variance and price clustering tends to occur when prices are
less volatile. This is the most interesting result as it deviates from the behavior observed in the
daily analysis. The parameter for the preceding trade duration gs significantly varies for different
stocks, similarly to g;. When the preceding trade duration is the only explanatory variable included
in the model, however, g3 is positive for all stocks. Recall that durations have a positive effect on
instantaneous variance as d is positive for all stocks. This implies that durations have an effect on
instantaneous variance which in turn has an effect on price clustering. However, when controlling
for instantaneous variance, durations do not bring additional information to explain price clustering.
These observations are in line with the daily analysis. Finally, the parameter for the volume g4 is
negative for all stocks. As in the daily analysis, higher volume is clearly associated with higher price
clustering.

We omit parameters hs and hyg controlling strength of price clustering from Table 3 as they are
not very informative for readers. It is far better to look at the average values of trader portions ¢y,
@5 and @19 reported in Table 4. The average portion of ten-cent traders ranges from 0.48 percent
for the TRV stock to 10.54 percent for the BA stock. The average portion of five-cent traders ranges
from 0.34 percent for the TRV stock to 3.63 percent for the BA stock. An example of the progression
of trader type ratios is shown in Figure 4 for the BA stock on the first trading day of 2020.

4.4 Implications

Several hypotheses have been established to explain the price clustering phenomenon. The attraction
hypothesis of Goodhart and Curcio (1991) essentially states that there exists a particular preference
(basic attraction) for certain numbers, especially for the rounded ones. The negotiation hypothesis
of Harris (1991) assumes that traders use discrete price sets to lower the costs of negotiating. Once
the set of prices is reduced, the traders reach agreements more easily since the amount of information
that must be exchanged between negotiating traders decreases. Christie and Schultz (1994) argued in
the collusion hypothesis that the lack of odd-eighth quotes on NASDAQ cannot be explained by the
negotiation hypothesis, trading activity, or other variables thought to impact spreads, which suggests
that NASDAQ dealers might implicitly collude to maintain wide spreads. However, assessing these
hypotheses is out of the scope of our paper. In this section, we focus only on the most studied

11
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Table 2: The average log-likelihood and AIC of the model without price clustering, the model with
static price clustering, and the model with dynamic price clustering.

No PC Static PC Dynamic PC
Stock Lik. AIC Lik. AIC Lik. AIC
AAPL -2.3548 12080434 -2.3292 11949022 -2.2953 11775068
AXP  -25117 2284414 -2.5054 2278659 -2.5008 2274477
BA -2.8677 10745431 -2.8146 10546574 -2.7980 10484266
CAT  -2.6144 2092986 -2.6090 2088625 -2.6066 2086695
CSCO  -0.4650 1525535 -0.4636 1520852 -0.4606 1510984
CVX -2.1513 4094545 -2.1476 4087384 -2.1444 4081369
DIS -2.1382 5620020 -2.1295 5597162 -2.1231 5580359
DOW -1.6701 1981601 -1.6685 1979699 -1.6668 1977626
GS -3.1560 2292436 -3.1500 2288064 -3.1460 2285185
HD -3.1018 3043787 -3.0969 3039026 -3.0935 3035655
IBM -2.4432 2689846 -2.4393 2685501 -2.4360 2681876
INTC -0.8455 3165039 -0.8442 3160026 -0.8407 3147091
JNJ -2.3836 3976323 -2.3809 3971919 -2.3794 3969402
JPM  -2.0310 5831271 -2.0264 5817872 -2.0220 5805430
KO -1.2238 2758822 -1.2230 2757081 -1.2212 2753113
MCD  -2.9611 2787186 -2.9563 2782675 -2.9526 2779159
MMM -2.7229 2356746 -2.7180 2352455 -2.7149 2349844
MRK -1.7024 3763397 -1.7011 3760622 -1.6998 3757820
MSFT -1.7431 10325970 -1.7315 10257392 -1.7096 10127509
NKE  -2.1331 2878657 -2.1310 2875789 -2.1292 2873371
PFE -0.8423 2403152 -0.8415 2400862 -0.8398 2396048
PG -2.3049 3882847 -2.3024 3878712 -2.3007 3875756
RTX  -1.7279 1602691 -1.7238 1598954 -1.7207 1596096
TRV ~ -2.7871 1135714 -2.7861 1135292 -2.7848 1134797
UNH  -3.3882 3716005 -3.3834 3710792 -3.3816 3708786
\Y% -2.6542 5058066 -2.6485 5047243 -2.6434 5037606
V7 -1.3165 3025851 -1.3156 3023684 -1.3141 3020201
WBA  -1.1807 1507681 -1.1787 1505148 -1.1748 1500227
WMT -2.1291 3718970 -2.1262 3714030 -2.1233 3708967
XOM  -1.1969 4893716 -1.1951 4886388 -1.1895 4863486
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Composition of Trader Types for the BA Stock on January 2, 2020
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Figure 4: The time-varying portions of trader types obtained from the proposed price clustering model
for the BA stock on January 2, 2020.

Table 3: Estimated coefficients of the proposed dynamic price clustering model.

Stock c b a d f g1 g2 g3 ga

AAPL 6.09 0.08 0.29 -040 0.66 -0.33 0.61 -0.11 -0.69
AXP 532 0.10 035 -0.28 034 1.05 0.05 0.06 -0.74
BA 5.00 0.09 030 -0.29 0.39 -0.14 0.18 0.03 -0.71
CAT 5.60 0.04 0.26 -0.27 025 -0.28 0.29 -0.00 -0.71
CcsCoO  6.11 0.17 0.08 -0.35 0.81 0.28 0.40 -0.08 -0.37
CcvxX 579 0.11 035 -026 036 0.70 0.28 0.02 -0.64
DIS 6.06 0.12 033 -025 0.39 045 0.21 0.06 -0.64
DOW 5.71 0.15 0.33 -0.22 034 055 0.18 0.04 -0.70
GS 489 0.05 027 -031 029 1.06 0.12 0.02 -0.90
HD 5.01 0.08 029 -028 029 064 010 0.05 -0.83
IBM 5.79 0.08 032 -0.28 032 033 0.10 0.06 -0.80
INTC 6.29 0.14 0.13 -0.35 0.74 0.38 0.34 -0.06 -0.63
JNJ 5.76 0.13 040 -0.25 023 1.12 0.08 0.05 -0.74
JPM 5.76 0.17 044 -0.26 033 048 0.67 -0.07 -0.56
KO 597 025 033 -0.18 055 -0.05 0.62 0.01 -0.43
MCD 516 0.08 0.34 -0.27 031 1.69 0.02 0.06 -0.88
MMM 555 0.05 029 -027v 025 093 006 0.06 -0.87
MRK 589 0.20 0.40 -0.23 045 0.20 0.71 -0.09 -0.53
MSFT 6.37 0.11 0.27 -0.38 0.72 0.17 0.39 -0.05 -0.72
NKE 6.01 0.10 0.35 -0.25 0.29 0.45 0.05 0.08 -0.70
PFE 5.19 038 0.28 -0.15 070 0.36 034 0.03 -0.33
PG 584 0.11 040 -0.23 041 -0.13 1.35 -0.25 -0.53
RTX 6.12 015 034 -024 032 -0.50 0.02 0.10 -0.65
TRV 5.07 0.05 0.30 -0.30 096 -0.66 0.57 -0.14 -0.02
UNH 458 0.07 0.28 -0.27 039 0.08 0.11 0.03 -0.73
\Y 591 0.06 0.32 -0.27 032 0.65 0.09 0.06 -091
VZ 5.79 027 038 -0.19 044 253 0.71 -0.05 -0.53
WBA 582 0.12 0.18 -0.34 0.68 0.38 0.26 -0.00 -0.62
WMT 6.19 0.12 038 -0.24 034 -233 0.15 0.08 -0.71
XOM 6.11 024 0.31 -0.18 0.57 -0.51 098 -0.06 -0.52
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Table 4: The average values of the time-varying parameters of the proposed dynamic price clustering
model. Values of i are in dollars and values of @1, @5, and @19 are in percent.
Stock n a Y1 ©s ©10
AAPL 291.80 843 9237 0.72 6.91
AXP 98.43 7.01 95.05 181 3.15
BA 175.80 6.85 85.84 3.63 10.54
CAT 11791 6.99 9540 185 2.75
CSCO 4222 10.26 98.07 0.54 1.38
CVX 88.26 7.62 96.26 1.32 242
DIS 112.50  7.90 94.18 225 3.56
DOW 36.46 7.69 9736 136 1.29
GS 193.14 6.40 9549 1.06 3.45
HD 21544  6.63 95.72 1.44 284
IBM 124.05 7.38 96.01 1.64 2.34
INTC 57.72 9.82 97.83 0.65 1.52
JNJ 140.37  7.63 96.78 1.36 1.85
JPM 103.65  8.03 9547 254 1.98
KO 48.33 8.88 98.29 0.67 1.04
MCD 183.86 6.74 96.12 0.72  3.16
MMM 14992 7.02 95.87 1.17 2.96
MRK 79.28 843 9769 123 1.08
MSFT 169.29 9.11 9457 0.84 4.59
NKE 88.58 7.67 96.89 1.60 1.51
PFE 34.46  9.30 98.07 1.01 091
PG 116.41 761 96.82 1.87 1.31
RTX 62.28 8.13 95.83 2.06 211
TRV 111.57  6.59 99.18 0.34 0.48
UNH 27173 6.29 96.01 1.08 291
\Y 180.13  7.34 9559 1.03 3.37
VZ 55.60 8.85 9790 1.13 097
WBA 4573 891 9749 0.72 1.79
WMT 11865 798 96.57 1.56  1.87
XOM 45.82 886 97.02 1.54 144
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hypothesis in the literature — the price resolution hypothesis.

The price resolution hypothesis of Ball et al. (1985) considers the source of price clustering to be
the uncertainty. It states that when the amount of information in the market is low and the volatility
becomes higher, the market participants incline to round their prices, and consequently, the price
clustering increases. This hypothesis was confirmed by many studies. The studies found that price
clustering increases with volatility using different data and measures. For example, Ahn et al. (2005)
computed the volatility as the inverse of the daily return standard deviation, while Tkenberry and
Weston (2008) used the standard deviation of returns over the sample period, Box and Griffith (2016)
used the standard deviation of 15-minute continuously compounded midpoint returns over the trading
day, Schwartz et al. (2004) used the difference in the high and low prices for the day, and Lien et al.
(2019) utilized the transitory volatility defined as the coefficient of variation of intraday trade prices.
Davis et al. (2014) found that price clustering is positively related to volatility, however, only when
a non-high-frequency trading firm provides liquidity. On the contrary to the vast majority of the
literature, Blau (2019) reported based on panel regressions that the volatility is negatively related to
price clustering, where the volatility is measured as the standard deviation of residual returns obtained
from estimating a Fama and French 3-factor model.

Our results from the daily analysis show that the realized volatility is highly significant and pos-
itively related to the price clustering. This finding is in line with the price resolution hypothesis.
Interestingly, instantaneous volatility obtained from the proposed dynamic price model has a nega-
tive effect on price clustering. The results do not contradict since they explore price clustering from
different perspectives. The result based on daily data holds for low-frequency traders whose price
resolution is influenced by the uncertainty in a negative way, i.e. the higher daily volatility, the higher
price clustering. On the other hand, the presence of high-frequency traders is typically associated
with increased volatility (see, e.g., Rosu, 2019; Shkilko and Sokolov, 2020; Boehmer et al., 2020).
Moreover, high-frequency traders generally do not incline to price rounding (see Davis et al., 2014).
Consequently, the higher the instantaneous volatility is, the higher portion of high-frequency traders
is, which lowers the price clustering.

5 Conclusion

We have proposed a dynamic price model to capture agents trading in different multiples of the tick
size. In the literature, this empirical phenomenon known as price clustering was mostly approached
only by basic descriptive statistics rather than a proper price model. By analyzing 30 DJIA stocks
from both daily and high-frequency perspectives, we have revealed dissension between the two time
scales. While daily realized volatility has a positive effect on price clustering, instantaneous volatility
obtained by the proposed model has a negative effect. We argue that volatility on lower frequency
affects low-frequency traders through the resolution hypothesis while volatility on higher frequency
affects only high-frequency traders who do not tend to price clustering.

We believe the model to be sufficient for its purpose — capturing price clustering and allowing to
explain it. For the model to be able to compete with other high-frequency price models, however, it
would have to be improved. The main limitation lies in the underlying distribution. We have yet to
study how well the double Poisson distribution, which we have used, captures the observed prices.
However, due to our specific problem, we require the distribution to be defined on positive integers
and allow for underdispersion. The range of possible alternatives is therefore severely limited as it is
not a typical situation in count data analysis. Furthermore, the specification of the dynamics could be
enhanced. We could include a separate model for durations and we could add a seasonality component
to the volatility. One possible direction for the future research is therefore to assess the suitability
of the double Poisson distribution for prices, extend the specification of the proposed dynamic model
and compare it with various models for price differences.

Concerning the empirical study, our focus has been on the price variance, whether it is daily
realized volatility or instantaneous variance. Nevertheless, we have also included the expected price,
the preceding trade duration, and the volume as explanatory variables. These are the most common
variables in the price clustering literature. However, other factors such as the spread and the investor
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sentiment could also be considered. In the context of the proposed high-frequency price model, any
variable could be straightforwardly included in the price clustering dynamics. Analyzing the effects
of these factors is the second possible direction of the future research.
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A Derivation of Distribution for Specific Trader Types

Let there be m types of traders that can trade only in k1, ..., k,, multiples of the tick size respectively.
For trader type k € {ki,...,kn}, we derive the distribution of prices P [Y[k] = y’ 1, a]. We require
the distribution to be based on the double Poisson distribution, to have the support consisting of
multiples of k, to have the expected value E [Y[k]] ~ 4 and to have the variance var [Y[k]] ~ pe”“.
We can modify any integer distribution P [Z k] — y| 1, a] to have support consisting only of multiples
of k as

P[Y[k] :yu,a} :H{k‘y}P[Z[k] _Y

k

where T{k | y} is equal to 1 if y is divisible by k and 0 otherwise. We assume that Z*! follows the
double Poisson distribution with parameters ,u[k] and ¥ ie. Z[F ~ DP (u[k},a[k]). The expected

wal, (18)

value of Y*I is

] — S yp [y —
E{Y ] yz:;yP [Y y‘,u,oz}

— S (k| P[22 =
y=0

]

(19)

= ikyP [Z[k] = y‘,u,, a]
y=0

:@VM

~ k,u[k].
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The variance of Y* is

o0
2
var |[YIFI| = Z y—E y ¥l p |y = ylu, o
)= v -m ) e )
e 2
=S (v-E YY) 1{k |y [0 = - 0]
y=0
>~ (ky— e [24]) P [24 = 3fno] v
SN (ky—kE[2M]) P2 :y‘u,a
y=0
= k2var {Z[k’]}
~ k2u[k]efa[k].
Our last requirements E [Y[k]] ~ u with var [Y[k]] ~ pe~“ lead to the system of equations
p = kplk
(k] (21)
pe @ _ 2 (k] ,—a
with the solution
plkl = %, ol = o+ 1n (k). (22)
Everything together gives us the distribution
(k] — - K _ Y (k] ol
P[Y yu,a} ]I{k‘|y}P[Z ku,a}, Z DP(k,a—i—ln(k)). (23)
Note that the mixture distribution of all prices
P[Y = y|uaav()0k17"')90km] = Z QOkP [Y[k] = y‘#a@] (24)
ke{k1,km}

has approximately the same expected value and variance as the distribution of Y¥1. This is based on
the identity

Elg()] = 9P Y =yl o, 0k, - - 0k,

zig(y) > P [Y[klzy‘ma]

y=0 ke{ky,...om}
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where ¢(+) is any function satisfying that E [g (Y[k})] are the same for all k.
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B Descriptive Statistics of Cleaned Data

Table 5: The table reports a number of observations (#Trades), sample mean (Mean P) and standard
deviation (SD P) of prices, sample mean (Mean D) and standard deviation (SD D) of durations, and
price clustering (PC) calculated as the excess relative frequency of multiples of five cents and ten cents
in prices.

Stock  #Trades Mean P SDP Mean D SD D PC [%]

AAPL 2671590 291.71 34.67 1.10 271 8.28
AXP 467623 98.59 17.84 6.24 13.30 4.02
BA 1886 402 176.06 60.40 1.55 5.01 11.52
CAT 413148 118.07 14.32 7.08 15.25 3.79
CSCO 1712341 4226 4.14 1.71 5.54 2.08
CVX 964 508 88.34 15.87 3.03  6.42 3.03
DIS 1327041 112.56 16.38 2.20  4.67 4.80
DOW 606116 36.53  8.33 4.82  10.44 2.24
GS 376 058 193.37  31.28 7.78 16.89 3.53
HD 503522  215.65 28.69 5.80 12.12 3.57
IBM 563 345 124.12  15.30 5.19 10.60 3.34
INTC 2065813 57.84  5.53 142 4.22 2.13
JNJ 846 988 14042  9.87 3.45 714 2.68
JPM 1448425 103.69 17.38 2.02 4.30 3.71
KO 1140050 48.35  5.78 256  6.63 1.45
MCD 483508 184.02 20.76 6.05 12.52 3.16
MMM 445633 150.04 14.01 6.56 13.99 3.51
MRK 1118215 79.30  5.40 2.61 5.9 1.94
MSFT 3099279 169.25 16.27 0.94  2.40 5.96
NKE 687619 88.66 11.31 4.25  8.78 2.50
PFE 1439433 3448  3.06 2.03 5.73 1.56
PG 855186 116.44  6.85 3.41 7.14 2.79
RTX 470061 62.28  4.87 3.04 549 3.37
TRV 216618 111.75  17.08 13.49  29.25 1.84
UNH 561256  271.93 26.72 5.21 12.16 3.39
A% 965 718 180.20 18.36 3.03  6.07 3.68
VZ 1162040 55.61  2.60 252  6.15 1.62
WBA 668123 45.78  4.87 4.38 10.54 2.22
WMT 886 255 118.66  6.14 3.30  6.82 2.85
XOM 2057230 45.84  9.29 142 3.43 2.25
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