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Abstract. The aim of this paper is an assessment of the reϐit step impact on ϐinan-
cial risk measures prediction – Value at Risk (VaR) and Expected Shortfall (ES)
– for four world market price indices. Generalized Autoregressive Score (GAS)
models assuming the Student’s t, skew-Student’s t, and Gaussian distributions
are analyzed and compared to the t-GARCH model. VaR and ES predictions are
backtested using rolling windows while considering various reϐit steps. Three
different performance measures for predictions are utilized: dynamic quantile
test, quantile loss function, and Fissler and Ziegel loss function. The results show
that the choice of the reϐit step does not signiϐicantly inϐluence VaR and ES pre-
dictions based on GAS models with the Student’s t and skew-Student’s t distri-
bution. However, VaR and ES predictions based on Gaussian distribution react
extensively in the periods of price shocks.
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1 Introduction
Risk measures evaluate the risks that a ϐinancial institution goes through. The two leading risk measures
are Value at Risk (VaR) and Expected Shortfall (ES). The VaR measures the largest expected portfolio loss
over a particular time horizon at a given probability level assuming normal market conditions. It can also be
comprehended as an estimate of the largest loss that could occur with 100α% probability based on already
known losseswithin a certainperiodof time. Despite beingwidelyusedbyall banks and regulators, VaRdoes
not fulϐill one of the axioms of coherence [1]. These axioms strive to distinguish good and bad riskmeasures.
Breaking some of them can lead to paradoxical results. Speciϐically, the VaR violates subadditivity since a
sum of portfolios might exhibit a higher risk (VaR) than sub-portfolios. The ES is introduced by Rockafellar
et al. [6] and it measures the expected loss in the 100α% worst cases where usually α ∈ {0.01, 0.05} and
therefore it takes into consideration the shape of the distribution tail. However, it does not consider only
the worst case that can occur but the average of the worst cases. The ES is proven to be a coherent indicator
[5].

The risk measure estimation requires an accurate estimate of the conditional distribution of future returns.
Then, the VaR and ES at time t for a risk level α can be computed as

VaRt(α) ≡ F−1(α;θt, ξ), ESt(α) ≡
1
α

∫ VaRt

−∞
zdF(z,θt, ξ),

where F−1 denotes the inverse of the continuous cumulative density function, θt is a vector of time-varying
parameters and ξ is a vector of additional static parameters. Thus, the VaR is simply the 100α % quantile
of the return distribution at time t and the ES is the average of the 100α%worst cases.

In this paper we utilize the Generalized Autoregressive Score (GAS) framework for the time-varying param-
eter estimation. First, the GAS models are deϐined in Section 2. Second, the GAS estimates are compared to
the well-known GARCH models on an empirical study of four stock market indices in Section 3. Third, in
Section 4, the VaR and ES estimates are backtested using rolling windows and the impact of the length of the
reϐit step is analyzed. Section 5 concludes.
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2 GAS Models
Generalizedautoregressive score (GAS)models proposedbyCreal et al. [4] belong to the class of observation-
drivenmodels that utilize a scaled score of the likelihood function as the drivingmechanism. The possibility
to let some parameters vary in time is necessary for capturing the dynamic behavior of time series. A huge
beneϐit of GAS models is their ability to take advantage of the complex density structure rather than only
consider means and higher moments. Moreover, the likelihood evaluation is straightforward.

In accordance with a notation of [3], let yyyt be anN-dimensional random vector of the dependent variables at
time t and θt be a vector of time-varying parameters. Then yyyt follows conditional observation density p(·)

yyyt|yyy1:t−1 ∼ p(yyyt;θt)

for t = 1, . . . ,T, where yyy1:t−1 is a matrix which contains the past values of yyyt up to time t− 1. The vector of
time-varying parameters θt depends on yyy1:t−1 and a set of additional static parameters ξ, θt ≡ θ(yyy1:t−1, ξ).

The GAS updating mechanism for the time-varying parameter θt is

θt+1 ≡ κ+ AAAssst + BBBθt,

where κ is a vector of constants measuring the level of the process, BBB is a diagonal matrix of autoregressive
coefϐicients controlling for the persistence of the process andAAA is a diagonalmatrix of parameters indicating
the step of the update. κ, AAA and BBB are collected in the set ξ. ssst is the scaled score, which depends on the past
observations and the time-varying parameters

ssst ≡ SSSt(θt)∇t(yyyt,θt),

where SSSt is the scaling function and∇t is the score

∇t(yyyt,θt) ≡
∂ log p(yyyt;θt)

∂θt
, SSSt(θt) ≡ It(θt)

−γ .

Creal et al. [4] suggest to set the scaling matrix to the γ-th power of the Fisher information matrix

It(θt) ≡ Et−1

[
∇t(yyyt,θt)∇t(yyyt,θt)

′
]
.

The vector of static parameters ξ ≡ (κ,AAA,BBB) can be estimated by maximizing the log-likelihood function.

3 Empirical Study
Four major world stock market indices are analyzed in the empirical study. The ϐirst two indices, DJIA and
S&P 500, are related to the U.S. stock market. The FTSE 100 assesses the market in Great Britain and TOPIX
covers the Japanesemarket. Two time periods are analyzed: (i) January 3, 2000 –December 31, 2010, which
covers 2,767 days, (ii) January 4, 2010 – March 15, 2019, which covers 2,315 days. The ϐirst period contains
the global ϐinancial crisis and the second represents recent years. Each of the chosen periods evinces diverse
shapes of the return distribution which allows to overview of each model and distribution reaction. The
dataset is downloaded from Thomson Reuters Datastream.

3.1 Comparison of GAS Models
GAS models can utilize a wide range of possible conditional distributions. However, since the price returns
are often fat-tailed and possibly skewed, the most common distributions are Student’s t and skew-Student’s
t. This property is often demonstrated by comparing the results with the Gaussian distribution which is
symmetric and very sensitive to extreme values and changes in return variance. The scale parameter is
treated as time-varyingwhich follows theproperties of price returns. The skewness andkurtosis parameters
of the related distribution are tested whether the parameters vary over time. Dynamics for both of them are
not statistically signiϐicant across various time periods, thus skewness and kurtosis are treated as constant
and the scale is the only dynamic parameter. Since different scaling functions have no signiϐicant effect on
results, it is set to identity.

GAS models are estimated for each price index over each time period and evaluated based on the Akaike
information criterion (AIC). The results for both periods are shown in Table 1. The values of AIC are the
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2000–2010 2010–2019

AIC DJIA S&P 500 FTSE 100 TOPIX DJIA S&P 500 FTSE 100 TOPIX

Student’s t 7.966 8.275 8.177 8.962 5.267 5.457 5.819 6.825
Skew-Student’s t 7.968 8.276 8.177 8.966 5.269 5.459 5.820 6.826
Gaussian 8.073 8.354 8.199 9.005 5.418 5.629 5.885 6.948

Table 1 AIC values for GAS models in 2000–2010 and 2010–2019

lowest for the model utilizing the conditional Student’s t distribution, however, the differences between its
skewed version are negligible. Models based on normal distribution perform a lot worse as expected.

Figure 1 compares individually estimated ES series for GAS models with Student’s t and Gaussian distribu-
tions for two indices S&P 500 and TOPIX in the periods of 2000–2010 and 2010–2019. The green and blue
lines correspond to the Gaussian and the Student’s t distribution respectively. Both periods are character-
ized by a different behavior. While the ϐirst one (2000–2010) exhibits higher returns ϐluctuations due to
the ϐinancial crisis, the second one (2010–2019) is more tranquil with occasional jumps. These properties
result in different estimates of risk measures as well as the sensitivity of the index itself.

The S&P 500 ϐluctuates less and therefore does not exhibit too many sudden drops. On the other hand,
TOPIX is more sensitive and occasional jumps result in signiϐicant drops in estimated risk measures. In the
period of 2010–2019, the drops aremore severe, e.g. the estimated ES of TOPIX drops to−20.158 in 2011. It
conϐirms that the Gaussian distribution results in undue sensitivity to extreme values since it does not treat
the return heavy-tails properly.
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Figure 1 The estimated ES for S&P 500 and TOPIX based on Student’s t and Gaussian distributions

3.2 Comparison of GAS and GARCHModels
GARCH models are so far one of the most often applied volatility models. Both GARCH and GAS models
belong to the class of observation-driven models. Moreover, the original GARCH model is a special case of
theGASmodel, speciϐically, they coincidewhen the normal distribution and the inverse of Fisher information
are utilized. However, it does not apply to the t distribution since t-GARCH and t-GAS updating mechanisms
differ. Generally, GAS models have the advantage of using the complex density structure rather than only
means and higher moments.
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We compare t-GARCH and t-GAS on an example of TOPIX and S&P 500 in the periods of 2000–2010 and
2010–2019. Results in Table 2 show that while the t-GARCH performs better for S&P 500 in terms of the
AIC, it is the opposite case for themore volatile TOPIXwhere the t-GAS is superior. The estimated VaR along-
side the estimated volatility is plotted in Figure 2 where the blue and purple lines represent the estimated
volatility and VaR from t-GARCHmodel respectively, the red and green lines refer to the estimated volatility
and VaR from t-GAS model respectively, and the returns are black colored. For the TOPIX, the differences
in estimated VaR are rather small. However, VaRs for S&P 500 exhibit noticeable differences. As expected,
the score of the t distribution in GAS dynamics avoids the volatility to react too extensively to large values
of returns. The idea is that such large values might be caused by the fat-tailed nature of the data and thus,
should not be fully attributed to increases in the variance.

2000–2010 2010–2019

AIC t-GARCH t-GAS t-GARCH t-GAS

S&P 500 8.266 8.275 5.440 5.457
TOPIX 8.963 8.962 6.833 6.825

Table 2 The AIC values for t-GARCH and t-GAS
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Figure 2 The estimated 1% VaR for S&P 500 and TOPIX based on t-GAS and t-GARCHmodels

4 Backtesting VaR and ES for GAS Models
Backtesting veriϐies the precision of VaR and ES predictions. The sample of length T is divided into two
parts: in-sample of the lengthm and out-of-sample of the length T−m, and the approach of rolling windows
is utilized. We analyze different reϐit steps for rolling windows and their impact on predictions. The output
of the rolling windows are predicted values of the length T − m and they are used to calculate VaR and
ES. Then, the models are assessed by the dynamic quantile (DQ) test and the Fissler and Ziegel loss (FZL)
function for the joint VaR and ES evaluation.
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4.1 Sensitivity of the Reϐit Step for Rolling Windows
There are two parameters that in rolling windows that are required to be set: the forecast length T−m and
the length of the reϐit step. The forecast length is set to 1000 which represents approximately one-third of
the whole sample. The length of the reϐit step can vary from 1 to T and there is no rule how to set it. The
natural choice seems to be the length of 1 and 5 for the daily data [2] and the length of 4 for quarterly data
[3]. Therefore, the sensitivity of the reϐit step is analyzed for the daily returns by comparing the estimated
VaR and ES based on GAS models. Considered lengths are 1, 5, and 30.

For the GAS model utilizing the Student’s t distribution, the lengths of 1 and 5 result in almost identical
predictions, i.e. the estimated VaR and ES basically copy each other. The differences between the lengths of 1
and30 are negligible aswell, however, slight departures can be observedduring the ϐinancial crisis in the end
of 2008. On the other hand, the VaR predictions frommodels with Gaussian distribution differ substantially
from their ϐitted values. The Gaussian predictions exhibit high sensitivity to the sudden changes in the index
prices causing the estimated VaR to drop rapidly. This holds for shocks more than for slight changes but the
effect is present for both. Moreover, the predictions based on the longer reϐit step are even more sensitive.

4.2 Quantile Loss Function and Quantile Dynamic Test
Quantile losses are averaged over the forecasting periods and the preferredmodel is the onewith the lowest
average value. The quantile loss (QL) function for time t at risk level α

QLt(α) ≡ (α− dt)(yt − VaRt(α)), dt ≡ I {yt < VaRt(α)} ,

where I{·} is an indicator function. Series dt, t = 1, . . . ,T, is called the hitting series and if the model is cor-
rectly conditionally covered, dt should be independently distributed. This is tested by the dynamic quantile
(DQ) test which is based on the joint hypothesis that (i) the hitting series are independently distributed, and
(ii) the expected proportion of exceedance is equal to the risk level. The null hypothesis of the DQ test can
be interpreted as the correct unconditional and conditional coverage and not rejecting the null hypothesis
is desired.

The averaged QL functions are calculated for 1% and 5%VaR and the results show that the lowest values be-
long to the GASmodels with the Student’s t or skew-Student’s t distribution. Their differences are negligible.
On the other hand, the gap between these and the Gaussian model is more profound.

The results show that the QL does not change with the reϐit step, i.e. if the model is the best-performing one
using the reϐit step of 1 then it also performs best when reϐit step of 5 or 30 is utilized. However, it does not
apply for various conϐidence levels α, e.g. for FTSE 100 in 2000–2010 period, the model with the Gaussian
distribution exhibits a better ϐit for 5% VaR while the skew-Student’s t distribution ϐits the 1% VaR better
than the Gaussian one.

Based on the DQ test and the 5% signiϐicance level, we cannot reject the null hypothesis of the correct spec-
iϐication for 5% VaR – this applies for all GAS models and indices in each period with the reϐit step of 1.
However, the results for 1% VaR vary. Generally, the DQ test rejects the correct GAS model speciϐication
for models with the Gaussian distribution rather than for models with the Student’s t distribution or skew-
Student’s t distribution. Moreover, for a given reϐit step in a given time period, the null hypothesis tends to
be rejected either for all considered distributions or none of themwhich is a common andwell-documented
issue of the DQ test.

4.3 FZ loss function
Despite the QL function for the VaR, there is no such loss function for the ES since it is not an elicitable risk
measure. However, the VaR and ES are jointly elicitable using test Fissler and Ziegel loss (FZL) function. Let’s
assume that VaR and ES are strictly negative and the generated loss differences are homogeneous of degree
zero. Then the associated joint loss function FZL for time t at risk level α is formulated as

FZLαt ≡ 1
αESαt

dt(yt − VaRα
t ) +

VaRα

ESαt
+ log(−ESαt )− 1

for the casewhen ESαt ≤ VaRα
t < 0. FZL functions are also averaged over the forecasting period and the pre-

ferred models are those with lower average values.

FZL values are calculated for all considered indices, periods, reϐit steps, distributions, and for both 1% and
5% risk levels. The results almost copy the QL function results. Generally, the GAS models with Student’s t
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or skew-Student’s t distribution have the lowest FZL values and the differences between them are negligible.
The gap is more profound between the Gaussian and Student’s t or the Gaussian and the skew-Student’s t.
Furthermore, the gaps between Gaussian and t distributions are much higher for 1% VaR than 5% VaR as
expected. Overall, the choice of the reϐit step does not inϐluence the prediction performance of models in
terms of the average FZL value. There are only a few exceptions – the differences are negligible and occur
usually between the Student’s t and skew-Student’s t distribution.

5 Conclusion
In this paper, two risk measures – the Value at Risk and Expected Shortfall – are modeled and predicted by
GASmodels for fourmajorworld stockmarket indices. The considered GASmodels are assessed fromdiffer-
ent perspectives. First, our results show that GAS models with conditional Student’s t and skew-Student’s t
distributions perform similarly. Differences in terms of AIC values are negligible and the models are consid-
ered to be equally good in all assessed cases for all four indices. The estimated volatility and values of both
risk measures differ very slightly. On the contrary, the GAS model utilizing the Gaussian distribution per-
forms worse and leads to extreme values of the estimated volatility and consequently extreme values of the
VAR and ES in days of price shocks. Additionally, the t-GAS model is compared to the well-known t-GARCH
model. The results are ambiguous in terms of AIC values since examined periods result in no dominance of
any model. However, the estimated volatility from t-GARCH reacts more extensively to large values of re-
turns than volatility from the t-GAS model. This is caused by the score of the t distribution in GAS dynamics
since such large values are considered to be caused by the fat-tailed nature of the data and thus, they are not
be fully attributed to increases in the variance. Hence, GAS models might be of a better choice.

The choice of the reϐit step for rolling windows has a negligible impact on predictions based on GAS models
assuming the Student’s t or skew-Student’s t distributions. Consequently, the estimated values of VaR and
ES are almost indifferent. The choice of the reϐit step has a higher impact on predictions from the GASmodel
assuming the Gaussian distribution where the predicted values of VaR and ES tend to be signiϐicantly lower
than their ϐitted values in days with price shocks. There is even a noticeable difference among predicted
values considering different reϐit steps.

GASmodels with the Student’s t or skew-Student’s t distribution outperform the GASmodels with the Gaus-
sian distribution in terms of the prediction power. Three different performance measures for predictions
are considered: dynamic quantile test, quantile loss function, and Fissler and Ziegel loss function. Our re-
sults show that the model ranking is not sensitive to the choice of the reϐit step, i.e. if the model is the
best-performing one when the reϐit step of 1 is used then it also performs the best when the reϐit step of 5 or
30 is used. On the other hand, it does not apply for various VaR levels (α = {1%, 5%}), i.e. if themodel is the
best-performing one when α = 1% is used, it might not perform the best for α = 5%. However, generally,
the differences are negligible between models utilizing the Student’s t and skew-Student’s t distributions
which both perform better than the Gaussian one.
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