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Abstract: 

We formulate a bivariate stochastic volatility jump-diffusion model with correlated 

jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is 

proposed to estimate the model’s parameters and latent state variables (jumps and 

stochastic volatilities) given observed returns. The methodology is successfully 

tested on several artificially generated bivariate time series and then on the two 

most important Czech domestic financial market time series of the FX (CZK/EUR) 

and stock (PX index) returns. Four bivariate models with and without jumps and/or 

stochastic volatility are compared using the deviance information criterion (DIC) 

confirming importance of incorporation of jumps and stochastic volatility into the 

model. 
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1. Introduction 

A number of empirical studies confirmed that financial asset returns are not normal and 
exhibit fat tails (leptokurtic distribution). Many models going beyond the standard 
geometrical Brownian diffusion model have been proposed in order to accommodate the 
empirical facts. The most prominent are jump-diffusion models (see e.g. Cont, Tankov, 2004 
for a review), models with stochastic volatility (see Shephard, 2004 for selected papers), or 
models combining both features, i.e. jump-diffusion models with stochastic volatility, or even 
models with jumps in volatility. Modeling of portfolio returns or valuation of various multi-
asset derivatives requires generalizing of the models into multivariate setting. 

We are going to consider a bivariate jump-diffusion model with stochastic volatilities 
incorporating possible correlation of jump occurrence, jump size, and of the stochastic 
volatilities. The main goal of the paper is to propose an MCMC estimation method that will 
be tested on artificial and real world data. We have chosen the two most important Czech 
financial markets time series, namely a series of FX (CZK/EUR) exchange rates and of the 
stock market (PX index) returns. Joint modeling of the two series might be important for and 
an asset manager exposed to the Czech stock market and the exchange rate, or in case of 
certain derivatives (e.g. quanto) modeling. In both cases, the goal is to model the distribution 
of future returns of a portfolio exposed to both factors. 

For example, inspecting the development of the markets in 2004-2011 (Figure 4 - Figure 6) it 
seems that the returns of the time series exhibit many jumps and periods of low volatility that 
are followed by periods of high volatility or vice versa. Although the sample correlation of 
returns turns out to be almost zero, the volatilities appear to move in the same direction 
(Figure 6). The questions are: How do the two markets jump and how volatile are the 
stochastic volatilities? Is the non-Gaussian behavior explained by jumps or rather by 
stochastic volatility? Are the jumps in the two markets correlated in terms of occurrence and 
size? And moreover, are the stochastic volatilities correlated? 

Our estimation methodology is based on the MCMC (Markov Chain Monte Carlo) approach 
following Jacquier et al. (2007) and Johannes, Polson (2009). The first break-through 
application of the Bayesian methods for the analysis of stochastic volatility models has been 
made in Jacquier et al. (1994). The authors applied the MCMC algorithm to estimate 
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parameters as well the latent states of the stochastic volatility model on the US stock return 
data. The estimation method is shown to outperform other known estimation approaches, as 
the Method of Moments or the Quasi-Maximum Likelihood Estimator.  Since then extensive 
research on application of Bayesian methods on stochastic volatility models have appeared 
(see e.g. Shephard, 2004). Johannes, Kumar (1999) estimate state dependent jump models (on 
US stock data) in which arrival intensity and jump sizes depend on a given state variable 
including lagged jumps. Eraker et al. (2003) examine stochastic volatility models 
incorporating jumps in returns and volatility using US stock indices returns. Eraker (2004) 
utilizes in addition stock index option date and allows the diffusion and volatility processes 
being correlated. 

The contribution of this paper is in specification and estimation of a bivariate model with 
correlated stochastic volatilities and jumps. Johannes, Polson (2009) consider a multivariate 
version of Merton’s jump-diffusion model where jumps occur at the same times for all 
processes and the jump sizes have a multivariate distribution. Inspecting the times of probable 
jumps from the MCMC estimation of two univariate jump-diffusion models applied to the 
two considered return series we have noted that the jump times overlap only partially. So, in 
our specification we have two correlated Poisson processes and correlated jump sizes (if the 
jumps occur at the same time). Regarding the correlation of stochastic volatilities we may 
again firstly inspect the mean stochastic volatilities given by the MCMC algorithm applied to 
the two processes separately. Since the stochastic volatility residuals do not indicate any 
significant correlation but show a strong correlation in levels of the stochastic volatilities we 
propose a bivariate stochastic volatility jump-diffusion model with possible Granger causality 
between the stochastic volatilities as our full model specification (see Asai et al., 2006 or Yu, 
Meyer, 2006 for an overview of multivariate stochastic volatility models). The 
computationally difficult estimation of the model is based on our generalization of the method 
proposed firstly in Jacquier et al. (1994). 

The proposed bivariate jump-diffusion with stochastic volatilities will be firstly tested on 
artificially generated data. The goal of the test is to demonstrate that the estimation procedure 
yields acceptable results with respect to generating parameters, in particular that it is able to 
identify existence of jumps, stochastic volatilities, and their correlations. 

The methodology will be finally applied to estimate and compare four bivariate models on the 
FX and stock returns series, specifically: the ordinary diffusion model, the jump-diffusion 
model, the diffusion model with stochastic volatility, and the jump-diffusion model with 
stochastic volatility.  Performance of the models will be compared using the deviance 
information criterion (DIC) generalizing according to Spiegelhalter et al (2002) the Akaike 
information criterion (AIC) and that is applicable to models with a large number of latent state 
variables. Importance of the choice of an appropriate model will be illustrated calculating 
VaR for various time horizons and confidence levels. 
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2. Methodology 

In this section we are going to give a brief overview of the relevant stochastic models. We 
also outline the key elements of the MCMC methods and their implementation in case of the 
stochastic models under consideration.  Finally we shortly describe the classical and Bayesian 
VaR estimation methodology. 

2.1 Stochastic Asset Price Models 

The most traditional (related to the Black-Scholes formula) continuous-time financial model 
is the geometric Brownian motion described by the stochastic differential equation (SDE) 

(1) Sdt dzdS S   

where ( )S t  is an asset price,  its drift,  its volatility, and dz  the Wiener process increment 

(see e.g. Shreve, 2004). The equation can be simplified applying the Ito’s lemma into a 
generalized Wiener process equation 

(2)    2log / 2d dt dzS     . 

The left hand side of (2) can be interpreted as the log return over a time interval of the length 
dt . In practice, a time (Euler) discretization is used in order estimate the parameters from an 
observed financial time series or in order to generate future returns. In case of the equation (2) 
the Euler discretization takes the simple form 

(3) , ~ (0,1)i i ir N   ň ň , 

where 1ln /i i ir S S  is the log return over a regular time interval of length t , 

 2 / 2 t     , and t   . According to (3), observed returns should have a normal 

distribution. However, many studies demonstrate that the returns have, typically, a leptokurtic 
distribution, in particular fat tails. Consequently, the geometric Brownian motion is proposed 
to be generalized in various directions, in particular, allowing for jumps (see Cont, Tankov, 
2004) and stochastic volatility (see Shephard, 2004). 

The jump-diffusion SDE can be written in the log-return form as 

(4)   2log ( / 2 )Jd dt d JS z d       , 

where the jump term, dJ ZdN , has a normally distributed ( , )J JN    jump-size component 

and a component given by the Poisson counting process N with intensity  . Essentially, this 
component adds a mass to the tails of the returns distribution. We consider a time 
discretization where at most one jump can happen over a single time step: 

(5) 
~ (0,1), ~ ( , ~ Ber) n( ).,

i i i i

i i J J iN Z N

r Z J

J

 
  

   ň

ň
 

According to Eraker et al (2003) this assumption does not introduce any bias in the parameter 
estimates. 
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Stochastic volatility models allow variance 2V  or log-variance to evolve according to an 

SDE, i.e. the constant volatility  in (2) or (4) is replaced by the stochastic volatility V . For 

example the Heston’s (1993) model sets 

( ) V VV d V dzd tV      . 

Following Jacquier et al (1994) and Johannes, Polson (2009) will we rather consider the log-
variance SDE: 

(6) ( lol gg )o V VV dtd V dz    . 

In the discrete setting, with logi ih V , the equation takes the form of AR(1) model: 

1 1) , (0,1)( V V
i i i V i ih h Nh t t        �ň ň . 

Rearranging the terms the equation can be written as 

(7) 1
V

i i ih h    ň , 

where t   , 1 t    , and V t   . 

If two or more financial assets is to be model than possible correlations needs to be 

considered. For example if 1S and 2S are two asset prices following (1) with appropriate 

indexes we have to admit possibility of correlated 1dz and 2dz . If the prices follow the jump-

diffusion process (4) then we have to admit a correlation between 1dJ and 2dJ . Finally, in 

case of stochastic volatility (6) we might consider a correlation between 1
Vdz and 2

Vdz , but 

also a mutual correlation between 1dz and 1
Vdz , and the correlation between 2dz and 2

Vdz . Due 

to the mean-reverting form of (6) we should also consider a possible correlation between 

1logV and 2logV that could be captured introducing 2lnV into the SDE for 1lnV and vice versa. 

A nonzero coefficient is then interpreted as Granger causality form one asset variance to 
another. 

An analyst that needs to model the distribution of future returns of a portfolio or of a 
derivative payoff depending on two or even more assets stands in front of a difficult task: to 
choose an optimal model and at the same time to estimate in a feasible way its parameters 
using historical or currently observable data. Due to increasing complexity of the models we 
will focus on the MCMC Bayesian estimation and model comparison approach. 

2.2 Markov Chain Monte Carlo (MCMC) 

The Bayesian MCMC sampling algorithm has become a strong and frequently used tool to 
estimate complex models with multidimensional parameter vectors, including latent state 
variables. Examples are financial stochastic models with jumps, stochastic volatility 
processes, models with complex correlation structure, or switching-regime processes. For a 
more complete treatment of MCMC methods and applications we refer reader for example to 
Johannes, Polson (2009), Rachev et al. (2004), or Lynch (2010). 
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MCMC provides a method of sampling from multivariate densities that are not easy to sample 
from directly, by breaking these densities down into more manageable univariate or lower 
dimensional multivariate densities. To estimate a vector of unknown parameters 

 1,..., k  from a given dataset, where we are able to write down the Bayesian  marginal 

densities  da a| t, ,ijp i j    but not the multivariate density  | datap   , the MCMC 

Gibbs sampler works according to the following generic procedure: 

0. Assign a vector of initial values to  
1

0 0 0,...,
k

    and set 0j  . 

1. Set 1j j  . 

2. Sample 1 1
1 1 2 ,...,( )data| ,k
j j jp    � . 

3. Sample 1 1
2 2 1 3 ,..., da( | , , )taj j j j

kp     � . 

  

k+1. Sample 1 2 1,...( | , , ), dataj j
k k

j
k

jp     �  and return to step 1. 

According to the Clifford-Hammersley theorem the conditional distributions 

 da a| t, ,ijp i j   fully characterize the joint distribution  | datap   and moreover under 

mild conditions the Gibbs sampler distribution converges to the target joint distribution 
(Johannes, Polson, 2003). 

The conditional probabilities are typically obtained applying the Bayes theorem to the 
likelihood function and a prior density, e.g. 

(8)      1 1 1 1 1 1
1 2 1 2 1 2,..., data data | ,..., ·prior ,...| , ,, |j j j j j

k k k
jp L              . 

We will often use uninformative priors, i.e.  prior 1i   and assume that the parameters are 

independent. In order to apply the Gibbs sampler the right hand side of the proportional 
relationship needs to be normalized, i.e. we need to be able to integrate the right hand side 

with respect to 1 conditional on 1 1
2 ,..., j

k
j   . 

Useful Gibbs sampling distributions are univariate or multivariate normal, Inverse Gamma1 or 

Wishart, and the Beta distribution. If 1,..., Ty yy  is an observed series assuming that 

iid  2,iy N  �  with unknown parameters  and  then 

                                                            
1 Inverse gamma probability distribution density function with the shape parameter  and scale parameter  is 

given by   1; exp(, / )
( )

IG x x x



  


  


 where  is the Gamma function. The mean of x is 
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(9) 

2

2
1

2

2

)1
| , ) ( | , ) ( ) ( , )

2

(
( ; exp

e ;
2

2

xp ,
2

TT
i

i
i

i i

y
L p

T

T y y

T

p y


       


   




      
 

   
       

  


  
 





 

y y

 

using the uninformative prior )( 1p   and 

(10) 

 

2 2 2
2

1

2 2
12 22

2

1
| , ) ( | , )· ( )( ;

( (
exp ;

( , )

) )
,

2 2 2

T

i
i

T
i i

L p yp

y
I

yT
G

       


 
 





    


 

 
 

     
 

 

y y

 

using the prior 2 2( ) 1/p   equivalent to the uninformative prior 2(log ) 1p   . Hence the 

Bayesian distributions for  and  can be obtained by the Gibbs sampler iterating (9) and 

(10). The prior distributions are often specified in order to improve convergence but not to 
influence (significantly) the final results, typically a wide normal distribution conjugate prior 

distribution for  and a flat inverse gamma distribution for 2 . 

If the series is multivariate normal then the distributions are generalized to multivariate 
normal and inverse Wishart (Lynch, 2007). A multivariate discrete-time diffusion process (3) 

is in fact equivalent to a multivariate normal return series model with iid ( , )i N r μ� , where 

,1 ,( ,..., ) 'i i i mr rr  is the vector of returns on m assets observed at time i , μ is a vector of 

means, and  a covariance matrix. The marginal distributions are 

(11)  
1

,
1 1

| , ;
T

i
iT T

p 


    
 

μ r μ r  and 

(12)      ( 1)/2 11
| , ; , | | ex Sp

2
trT mSp IW T           

 
r μ  

Where  ; ,IW T S denotes the inverse Wishart distribution, 
1

( ) '( )
T

i i
i

S


  r μ r μ is the scale 

matrix, and the improper prior 
1

2|( ) |
m

p



   analogous to the univariate case has been used. 

                                                                                                                                                                                          

1








for 1  and the variance is 

2
2

21)( ( 2)




 


 
for 2  . Alternatively, given  and 2 we 

get 
2

2
2





  and 

2

2
1


 


 

 
 
 

. 
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If 1,..., Tb bb is a binary series where Bern( )ib � iid, then  can be sampled using the 

beta2 distribution: 

(13) 1

1

( (1| ) ( | )· ( ) ) ) Beta( ;(1 1, 1)i i

T
b b n T n

i

L p n T np         



      b b  

with the uninformative prior )( 1p   . Generally, the beta distribution Beta( ; , )x   would 

be a conjugate prior where  and  can be interpreted as prior “successes” and “failures.” 

If the integration on the right hand side of (8) is not analytically possible (which will be also 
our case) then the Metropolis-Hastings algorithm can be used. It is based on a rejection 
sampling algorithm. For example in step 2 the idea is firstly to sample a new proposal value 

of 1
j and then accept it or reject it (i.e. reset 1

1 1:j j   ) with appropriate probability so that, 

intuitively speaking, we rather move to the parameter estimates with higher corresponding 
likelihood values. 

Specifically, step 1 is replaced with a two step procedure: 

1. A. Draw 1
j from a proposal density 1

1 1 1
1 2 ,...( ,| , )d t, a aj j

k
jq       , 

B. Accept 1
j with the probability  min ,1R  , where 

(14) 
   
   

1 1 1 1 1
1 2 1 2

1 1 1 1 1 1
1 2 1

1

1 2

,..., data ,.| , | , ,

| , | , ,

.., data

,..., data ,..., data

j j j j j j j

j j j j j j

k k

k k
j

p q
R

p q

      

      

    

     
 . 

In practice the step 1B is implemented by sampling a (0,1)u U� from the uniform 

distribution and accepting 1
j if and only if u R . 

It is again shown (see Johannes, Polson, 2003) that under certain mild conditions the limiting 

distribution is the joint distribution  | datap  of the parameter vector. Note that the limiting 

distribution does not depend on the proposal density, or on the starting parameter values. The 
proposal density and the initial estimates only make the algorithm more-or-less efficient. 

A popular proposal density is the random walk, i.e. sampling by 

(15) 1
1 1 (0, )j j N c   � . 

The algorithm is then called Random Walk Metropolis-Hastings. The proposal density is in 

this case symmetric, i.e. the probability of going from 1
1
j  to 1

j is the same as the probability 

of going from 1
j to 1

1
j  (fixing the other parameters), and so the second part of the fraction in 

                                                            

2 The pdf of the beta distribution is 1 1( )
Beta( ; , )

( ) ( )
(1 )x x x  

 
 

  





   for 0 1x  . The mean can 

be expressed as 



 




and the variance 2

2) ( 1( )




   


  
. 
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the formula (14) for  in step 1B cancels out. Consequently, assuming non-informative prior, 
the acceptance or rejection is driven just by the likelihood ratio 

 
 

1 1
1 2

1 1 1
1 2

data | ,...,

data | .., ,

,

.,

k
j j j

j j j
k

L
R

L

  

  

 

  
 . 

Another popular approach we shall use is the Independence Sampling Metropolis-Hastings 

algorithm where the proposal density  1q j does not depend on 1
1
j  (given the other 

parameters). The acceptance probability ratio (14) is slightly simplified but note that the 
proposal densities do not cancel out. In order to achieve efficiency the shape of the proposal 
density q  should be close to the shape of the target density p which is known only up to a 

normalizing constant. 

Typically, estimating complex stochastic models, we need to estimate the parameter vector 
with a few model parameters  , and a vector with a large number of state variables X  
(typically proportional to the number of observations). We know that 

, | data) (data | , )( · ( , )X p Xp p X     and so we may estimate iteratively the parameters 

and the state variables: 

| ,data) (data | , )· ( | )· ( ),

| ,data) (data | , )· ( | )·

(

( ( ).

p

p

X p X p X p

X p X p X p X

    
   

 

The parameters and state variables are sampled step by step, or in blocks, often combining 
Gibbs and Metropolis-Hastings sampling. 

2.3 Univariate jump-diffusion stochastic volatility model 

The main goal of this section is to propose an MCMC estimation algorithm for a bivariate 
jump diffusion stochastic volatility model. However, it will be useful to outline firstly the 
univariate jump-diffusion model and the extended model with stochastic volatility. It is then 
easier to define the sampling steps of the bivariate model estimation algorithm. Moreover,  
given two financial series, it is useful to estimate firstly the univariate models separately on 
the two series. Since the latent variables, i.e. jumps and stochastic volatilities, are also 
estimated, the output can be used to make a preliminary analysis of correlations between the 
jumps and stochastic volatilities. 

Let us firstly consider the discrete-time jump diffusion model (5) with constant volatility. 

Given the sequence of observed returns ; 1,... }d ={ ,ata i ir T , the parameters and latent state 

variables to be estimated are: ,, ,, ,, J J     Z J . 

In this case we may use the pure Gibbs MCMC algorithm: 

1. Sample reasonable initial values (0) (0) (0) (0) (0) (0) (0) ,, , ,, ,J J     Z J  

2. Sample ( ) ( 1) ( 1) ( 1)( ; , ) if ,0
J J

g g g g
i iZ JZ       and 
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( ) ( 1) ( 1) ( 1) ( 1) ( 1)( , ) ( ; , ) ; 1if 
J J

g g g g g g
i i ir Z Z JZ            . 

3. Sample ( )
1 0 1{0,1}, Pr[ 1] )/ (g

iJ J p p p    , where 

( 1) ( 1) ( 1)
0

( 1) ( 1) ( 1)
1

    ( , ) (1-

( , )

= ; ),

;

g g g
i

g g g
ip

p r

r Z

   

   

  

   
 

4. Sample ( ) ( ),g g  based on the normally distributed time series ( ) ( )g g
i i ir Z J  according 

to (9) and (10). 

5. Sample (0) based on Bernoulli distributed ( )g
iJ binary time series according to (13). 

6. Sample ( ) ( ),
J J

g g   based on the normally distributed time series ( )g
iZ  according to (9) 

and (10). 

Secondly let us consider a jump-diffusion model with stochastic volatility following the 
equation (6). The discrete time specification is: 

(16)  1log

, ),

log

~ (0,1), ~ ( , ~ Bern( ), iid

i i i i i

V
i i i

V
i i i J J i

V

N Z N

r V Z J

V

J



  

  


  



ň

ň

ň ň

 

In this case we need to estimate not only the latent state variables ,Z J but also the vector of 

latent stochastic variances V . The MCMC estimation unfortunately requires application of 

the Metropolis-Hastings since the conditional distribution for the variance iV (conditional on 

the other variances and parameters) is not a known one. It follows from (16) and the Bayes 
Theorem that: 

(17) ( ) 1 1, , , ) ( , ) ( ) (( | , | , , , | , )|i i i i i i i i i ip r Z p V pp V V J V VV      r Z JV . 

Here the first part of the right hand side of (17) is inverse gamma in iV : 

(18)    0.5 2| , ,( , ) ; , exp 0.5( ) /i i i i i i i i i i i i ip r ZV J Z J V rr Z VV J       . 

But the remaining two factors are lognormal3 in iV : 

1;log (log log ),i i iV V V  � , i.e. 

 1 2 2
1 1| , exp (log( ) log ) / (2 )i i i i iV Vp VV V  
     , 

                                                            
3 Lognormal probability density fiction with parameters  and  is given by 

 2 21
, ) exp 0.5(l /o; )

2
( g xL

x
N x    

 
   . It is useful to note that the mean of x is 

2exp( / 2)  and the variance is 
2 2) 1)exp(2(ex )p(    . 
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and similarly 

1 1; lolog (log ,g )i i iV VV      � , i.e. 

 2 2
1 1| , exp (log ) / (( ) log 2 )i i i iV Vp V V       in terms of iV . 

It is easy to verify that the product of the two lognormal distributions is proportional to the 
lognormal distribution with the corresponding normal distribution mean and standard 
deviation: 

(19) 
   2

1 1

2

lo(1 ) (log ) /

/

g 1 ,

1 .

i i iV V   

  

 



  




 

In order to obtain a proposal distribution Jacquier et al (1994) suggest replacing the lognormal 
distribution with an inverse gamma distribution fitting the first two moments. It is confirmed 
empirically that the choice of a proposal distribution with a shape closely mimicking the 
original distribution is of key importance since high dimensionality of the variance state 
variable vector makes convergence of the MCMC algorithm difficult. 

The product of two inverse gamma distribution density functions is an inverse gamma 
distribution density function, hence combining the inverse gamma distribution (18) and the 
fitted inverse gamma distribution we finally obtain the proposal density function: 

(20) 

 2 2
( )

2

2

( | , ; , ( exp( 0.5 ) 0.5( ) ,

1 2exp(
.

1 ex

, , , ) 0,5 1)  

)
where 

p( )

i i i i i i iq IG ZV r JV     




   




    



r Z JV

 

The proposal density is used in the Metropolis/Hasting algorithm within a new block, e.g. 
following the step 3 in the MCMC procedure for the jump-diffusion processes. This bloc 

updates all the variances , 1,...,iV i T . For 1V and TV the formula (19) needs to modified 

slightly since 0V and TV are not known. The diffusion volatility  is obviously replaced by the 

square root of the latest estimate of the variance iV and we also need to add a new MCMC step 

for the AR(1) coefficients ,  and  (for example following the step that updates V ). The 

coefficients ,  can be sampled with a bivariate normal distribution and  with the inverse 

gamma distribution. The extended MCMC algorithm is in detail described as follows: 

1. Sample reasonable initial values (0) (0) (0) (0) (0) (0) (0) (0) (0) (0), , , , , ,, , ,J J       V Z J  

2. Sample ( ) ( 1) ( 1) ( 1)( ; , ) if ,0
J J

g g g g
i iZ JZ       and 

( ) ( 1) ( 1) ( 1) ( 1) ( 1)( , ) ( ; f; , ) 1 i  
J J

g g g g g g
i i i ir Z V ZZ J          . 

3. Sample ( )
1 0 1{0,1}, Pr[ 1] )/ (g

iJ J p p p    , where 
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(21) 
( 1) ( 1) ( 1)

0

( 1) ( 1) ( 1)
1

= ; )( , ) (1-

( , )

,

;

g g g
i i

g g g
i i

p r V

r Z Vp

  

  

  

   
 

4. Sample new stochastic variances ( )g
iV for 1,...,i T using Metrolis-Hastings (14) with 

the proposal density given by (20) 

5. Sample new stochastic volatility autoregression coefficients ( ) ( ) ( ), ,g g g    from 
( )log g

i ih V for 1,...,i T using the Bayesian linear regression model (Lynch, 2007): 

(22) 

 

   

1

1 1

( ) 2

( ) ) ( 2 1

2

( )

ˆ ˆˆ( )  , where 
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2
, ,

2 2

, , ( ) ( ) .

T
T

g
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n
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β X'X e = y - Xβ

e e

β X'X

Xy X y

 

6. Sample ( )g based on the normally distributed time series ( ) ( )g g
i i ir Z J with variances 

( )g
iV , i.e. 

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1

1 1
;| , ,, , 1

g gT T T
g g g g i i i

g g g
i i ii i i

J Z
p

V V V

r 
  

 
  

 
  r Z J V . 

7. Sample (0) based on Bernoulli distributed ( )g
iJ binary time series according to (13). 

8. Sample ( ) ( ),
J J

g g   based on the normally distributed time series ( ) g
iZ according to (9) 

and (10). 

 

2.4 Bivariate jump-diffusion stochastic volatility model 

Our ultimate goal is to study relationship between returns, jumps, and volatilities of two 
related financial series. First, we may estimate independently the parameters and latent 

variables 1 1 1, ,J Z V and  2 2 2, ,J Z V of (16) for two given series of returns 1r and 2r . Since we 

also get estimates of the latent variables, i.e. jump times, jump sizes, and variances, we may 
inspect their relationship. For example we may analyze the overlap of probable jump times of 

the two processes, i.e. of the sets 1, 1] 0.[ 5{ | }ii P J   and 2, 1] 0.[ 5{ | }ii P J   . Similarly the 

relationship between mean volatilities can be analyzed. Since 1, 1,logi ih V is specified as a 

normal variable by the model, the mean volatility should be expressed by 

1, 1,exp( / 2)i ih  where 1,ih is the MCMC estimation of the mean of 1,log iV . The correlation 

between the series 1, ; 1,...,i i T  and 2, ; 1,...,i i T  (residuals or levels) indicates what the 

correlation between the stochastic volatilities might be. 
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However, to give a consistent answer we need to specify a full bivariate stochastic volatility 
jump diffusion model: 

(23) 

1, 1 1, 1, 1, 1,

1, 1 11 1, 1 12 2, 1 1 1,

2, 2 2, 2, 2, 2,

2, 2 21 1, 1 22 2, 1 2 2,

1, 1,

2, 2,

log lolog g

log log

11
~ 0, , ~ 0,

1

log

i i i i i

V
i i i i

i i i i i

V
i i i i

V
i Vi

V
i Vi

V V
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N
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1, 1 2, 1, 2,

2

2

2

1

~ ,

~ Bern( ), ~ Bern( ),  co ,rr

i J J Z J J

i J Z J J J

i i i i J

Z

Z

J J J J

N
    
    

  

  
  

  
     
             



 

The model does not take into account a possible correlation between the diffusion and log-
variance residuals, but it incorporate possible Granger causality between the two log-variance 

processes. For example if 12 0   then high level of 2logV (Granger) causes 1logV to become 

larger. Our preliminary analysis of the data we intend to study indeed indicates that the 

volatility residuals 1,
V

iň  and 2,
V

iň are not correlated, but 1,log iV and 2,log iV are correlated. We also 

compare the results of the stochastic volatility jump-diffusion model against the restricted 
bivariate jump-diffusion model with constant volatilities inspecting in particular the jump 
probabilities and the jump correlations estimated with and without stochastic volatilities. 

Correlated jumps 

In order to incorporate correlated jumps and jump sizes into the MCMC algorithm given in 
Section 2.3 we need to modify the steps 2 and 3 given as follows: 

Sample the new jump sizes (omitting the upper indices g and 1g  ) 

     
  

 1

| , , | , ,

' (

|

exp 0.5 ) ' )

exp 0.5( (

(

) ' )

i i i i i i i

i i i i Z J i Z

i i i i i

p Z r J p r Z J p Z

Z Z

m V m

y y

Z Z

 


  

    

  







 

where 

1, 1, 1,1

2, 2, 2,2

0
, , , , ,

0
i i i

i i i i i i i
i i i

r Z J
r Z J y r Z

r Z J
J


 


      

           
     




 

(24) 
1, 1, 2, 1 1 2

1 2 21, 2, 2,

2

2
,

i i i J Z J J
i J

Z J J Ji i i

V V V

V V V

    
   

 
 

 
  


 


 


, and 

   11 1 1 1, ( ) .i i i i J i i i i i i JV J J m V J r 
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Next we need to resample the correlated jump times. Since by definition 

11 1 2

1 2 1 2)(( 1 )1
J

p  
    


  where 11 1, 2,Pr[ 1& 1]i ip J J    we have 

1 1 2
1, 2, 1

2

(1
Pr

)(1 )
[ 1| 1]i i JJ J

  
 




    and 

1 2 1
1, 2 1

2

,

)

1

(1
Pr[ 1| 0]i i JJ J

  
 




  


 . 

Similarly to (21) (again omitting the upper indices g and 1g  ) we set 

0 1 2 2, 2, 1, 2,

1 1, 2 2, 2, 1, 21 ,

    ,  Pr[

 ,  

= ; , 0 | ],

= ; , 1| ]r[ ,P

i i i i i i

i i i i i i i

p r J

p

Z J J

r JZ Z J J

  

  



  

 

 

  
 

  
 

and sample 1, 1, 1 0 1{0,1}, Pr[ )/ (1]i iJ J p p p    . 

Finally we need to add two additional steps re-sampling the correlations J and Z . The jump 

size correlation can be in fact sampled in one step with jump size volatilities J using the 

inverse Wishart distribution (12)  as the series iZ is assumed to be bivariate normal. 

Regarding J we use the random walk Metropolis-Hastings step and the relationship 

1 2 1 2 1 2 1 2 1, 2,
1

, , , ) , , , ) (( | ( | , )
T

J J i i
i

L p Jp J     


 JJ JJ , where 

1 2 1 2 1 2 1

2 1

(1,1) (1,1),

(0,1

(1 )

) (1,1), (0,0) 1 (0,1)

(1 ), (1,0)

.
Jp p

p p p

p

p

       
 

  

    

  
 

Regarding the diffusion residuals correlation coefficient  it can be easily re-sampled using 

the random walk Metropolis-Hastings: 

   
1

2 , ; ,| i

T

i
ip r 



  2 21 1 1 1 2r , J ,Z ,V r ,J ,Z ,V,  

with the bivariate normal density function and the notation (24). 

Correlated stochastic volatilities 

Correlation between stochastic volatilities can be captured by correlated residuals and by 
correlated levels of the log volatilities expressed in the VAR(1) model (23). 

In order to simplify the notation set , ,logk i k ih V , ( 1, 2; 1,..., )k i T  . Re-sampling the 

variance 1,iV conditional on the other latent variables and parameters MCMC needs to take into 
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account its relationship to 1,ir and to 1, 1iV  , 2, 1iV  given by the VAR equation for 1,ih , but also to 

1, 1iV  and 2, 1iV  given by the equations for 1, 1ih  and 2, 2ih  . Applying the Bayes theorem: 

1, 1,( ) 1 1 1

1, 1, 1, 1, 1, 1, 1 2, 1 1, 1 1

2

, 2, 2, 1 1, 2,

( | , ,

| , , |

, , ,

, , |

)

( , ) ( ) ( ) ( )., , | , ,

i i

i i i i i i i i i i i i i

p V

V J V V Vp r Z p V p V p VV V V



   



    

r ZV V J
 

The first probability distribution on the right hand side is again inverse gamma in 1,iV , while 

the remaining ones are lognormal. The product of the three lognormal densities is lognormal 
with the corresponding normal distribution mean and variance: 

(25) 

2 2 2
2 1 11 1, 1 12 2, 1 2 11 1, 1 1 12 2, 1 21 2 2, 1 22 2,

2 2 2 2
2 11 1 21

2 2
2 1 2

2 2 2 2
2 11 1 21

( ) ( ) ( )
,

(1

.
(1

)

)

i i i i i i
i

h h h h h h           


   

 
   

        

 

 







 

The Metropolis-Hastings proposal density for updated 1,iV is then given by (20). The second 

process variance 2,iV is resampled analogously. 

Finally, given 1V and 2V (omitting the upper index g ) we need to update the coefficients 

1 11 12 1, , ,    and 22 2 221, , ,    . We shall use the Bayesian linear regression model as in the 

univariate case: 

 

    

1
1,1 1, 1 1,
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Xy Xβ X'X e = y - Xβ

e

X'X

y

e

β

 

Similarly we proceed for 22 2 221, , ,    . 

2.5 Model Comparison and Value at Risk Estimations 

In order to compare the different models we will use the deviance information criterion (DIC) 
of Spielgelhalter et al (2002). It is shown to generalize the Akaike information criterion (AIC) 
that is not appropriate to compare stochastic volatility or jump-diffusion models (Yu, Meyer, 
2006). In order to calculate AIC one needs to specify the number of free parameters. In case 
of the stochastic volatility and jump-diffusion models the number of additional latent 
variables estimated has an order of T. On the other hand, since the variables are not 
independent it is not clear what should be the number of free variables.  Likewise AIC, DIC 
has two components, a term that measures goodness-of-fit and a penalty term for increasing 
model complexity: 
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DDIC D p  . 

The first term is defined as the posterior mean of the deviance ) 2 log (da a( t | )D L    , i.e. 

|data[ ( )]DD E  . 

Here  includes all the model parameters and estimated state variables. Since the likelihood 
function (data | )L  is known the measure is estimated just averaging the likelihood over 

MCMC sample estimates of ( )g . 

The second term measuring the effective number of parameters is defined as the difference 
between the posterior mean of the deviance and the deviance evaluated at the estimated 

parameters ̂ , i.e. 

 ˆ
Dp D D   . 

The parameters are, in our case, estimated as means of the sampled values discarding an 
initial period of the MCMC sampling. The stochastic volatilities are estimated as 

, ,exp / 2)ˆ (k i k ih  where ,k ih is the mean of sampled values. In case of jump occurrence we set 

,
ˆ 1k iJ  if and only if the mean of sampled jump indicators is larger than 0.5, i.e. the 

probability of jump occurrence is estimated to be larger than 50%. The jump size is again 
estimated as the sample mean of sampled jumps. 

Other classical classical Bayesian goodness-of-fit measures to be mentioned are the Bayes 
factors or marginal likelihood. We follow Yu and Meyer (2006) who recommend the DIC 
measure that is shown to have a consistent performance with respect to the two standard 
measures and is relatively easy to compute. 

Value at Risk (VaR) 

Finally we intend to illustrate difference between the estimated bivariate models calculating 
VaR for different time horizons and confidence levels. If the true data were generated by a 
simple process, e.g. the pure diffusion one, then the estimations yielded by more general 
models (including jumps and/or stochastic volatilities) calibrated on the same dataset should 
be similar. However if the data contain “true” jumps and/or stochastic volatility, then the VaR 
estimations will probably significantly differ and the choice of model becomes important. 

Formally, Value at Risk, VaR( ,1 )N  is defined as [ ]X q X  where [ ]q X denotes the  - 

quantile of the random variable X modeling the market value of a portfolio, N (business) days 
to the future. The variable X can be also defined as the future return relative to the initial 
investment. 

We will consider a simple foreign stock investment where the domestic currency value of the 

portfolio is ·DC FCV S V , S is the exchange rate measuring foreign currency FC in terms of 

domestic currency DC, and FCV is the foreign currency value. The domestic currency log-

return over a time horizon can be expressed as the sum DC S FCr r r  of the exchange rate 
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log-return and the foreign currency stock return. Thus, in order to get the distribution and 

quantiles of DCr we need to model the joint distribution of Sr and FCr . 

The simplest and widely used (parametric normal VaR) method calculates the variances and 

the covariance of Sr and FCr , combines them to get the standard deviation of DC S FCr r r  , 
and multiplies it with a standard normal distribution 1  quantile to get an estimate of 

VaR(1,1 ) . To get N day estimate the value is scaled by N . We will use the estimation 

with an EWMA (exponentially moving weighted average) covariance matrix as a benchmark 
value. 

Given a specific stochastic model and its parameters we may simulate the returns 

1,...,T T Nr r  one to N days ahead, and so the compounded N-days log-return 
1

T i

N

i

r r 


 . Note 

that in case of the stochastic volatility model (16) the initial values must also include an 

estimate of the last variance TV . The bivariate model jump-diffusion model with stochastic 

volatility model (23) allows us to simulate the joint distribution of Sr and FCr over an N days 
horizon. 

The Bayesian estimations in fact yields an empirical distribution of the parameters 

approximated by a sequence of MCMC simulated values 1,..., K  (discarding an initial 

sampling period).  The Value at Risk estimated as above is then conditional on the estimate 

̂ , i.e. in fact we get �  ˆVaR ,1 |N   . Since the parameters are uncertain and modified 

parameters might influence significantly the VaR measure we should rather calculate a VaR 
estimate incorporating the parameter uncertainty. This can be easily done in the Bayesian 

framework sampling firstly i from 1,..., K  and then simulating the returns given the 

parameter vector i . The distribution of simulated returns can be used to obtain the Bayesian 

Value at Risk denoted as �  VaR ,1 | dataN  , i.e. VaR conditional on the data used to 

estimate the parameters rather than on a specific vector of point estimates. 

 

3. Empirical Study 

The main goal of this section is to apply the binomial jump-diffusion model stochastic 
volatility model, its submodels (binomial diffusion, jump-diffusion, and stochastic volatility), 
and the proposed estimation method to the FX and stock market time series returns. However, 
before doing so we are going to test the estimation procedures on artificially generated data in 
order to demonstrate that the model is able to identify or reject jumps and stochastic volatility 
parameters. The MCMC algorithm and all calculations have been implemented in Matlab. 

3.1 An Empirical Test 

We are going to sample T = 2000 returns according to the bivariate jump-diffusion stochastic 
volatility model (23) with several sets of the model parameters (and starting with initial log-
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variances 1,0 2,0log log 7V V   ). The proposed MCMC estimation method is then applied to 

the generated data and estimated parameters are compared to the original parameters that were 
used to generate the data. The “true” parameters are expected to lie with the Bayesian 
confidence intervals. 

The upper part of  Table 1 shows parameters of the first artificially generated bivariate 
process. There are no jumps, there is no correlation between the diffusion residuals, and no 
correlation between the variances. The lower part of the table shows the MCMC estimates 
with standard deviations in parenthesis. The MCMC procedure has been run 3000 times and 
first 1000 estimations have been discarded. Figure 1 shows, for example, relatively fast 

convergence of the first stochastic volatility equation coefficients 11 and  12 . 

Generated jump-diffusion process 1 with stochastic volatility 

1  1  1,J  1,J  1  11   12   1  

0.001 0 - - -0.14 0.98 0 0.13 
Generated jump-diffusion process 2 with stochastic volatility 

2  2  2,J  2,J  2  21   22   2  

0.003 0 - - -0.28 0 0.96 0.16 
Correlations 

  
J  Z  

- - - 
 

Estimated jump-diffusion process 1 with stochastic volatility 

1  1  1,J  1,J  1  11   12   1  

0.0022 
(4.477e-004) 

0.0026 
(0.0050) 

-0.0041 
(0.0421) 

0.0893 
(0.0108) 

-0.1337 
(0.0595) 

0.9794 
(0.0069) 

0.0020 
(0.0066) 

0.1233 
(0.0161) 

Estimated jump-diffusion process 2 with stochastic volatility 

2  2  2,J  2,J  2  21   22   2  

0.0023 
(4.606e-004) 

0.0045 
(0.0025) 

0.0304 
(0.0224) 

0.1021 
(0.0242) 

-0.1825 
(0.0603) 

0.0011 
(0.0059) 

0.9730 
(0.0074) 

0.1332 
(0.0138) 

Estimated correlations 
  

J  Z  

-0.0056 (0.0243) 0.4275 (0.1920) 0.0764 (0.5542) 

Table 1. Generated bivariate stochastic volatility process (upper table) and the MCMC estimated parameters. 

The estimated stochastic volatility parameters are consistent with the “true” parameters, 

indeed the estimated coefficients 12 and 21 are not significantly different from zero and so 

Granger causality would not be detected. The estimated means 1 and 2 seem to differ from 

the “true” values significantly, but we have to take into account the error caused by the data 
generation process itself possibly correlated to a relatively large volatility. The mean of the 
first generated return series turns out to be 0.0023 and of the second 0.0019 in line with the 
estimations. The zero jump intensities fall within the 95% confidence intervals around the 
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estimated values. In fact no jumps with probability larger than 0.5% are identified by the 

sampled jump probabilities (averaging the jump indicator ,k iJ ) – see Figure 2. 
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Figure 1. Convergence of the coefficients 11 and  12  
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Figure 2.  Sampled jump probabilities 

Table 1 shows the generating and estimated parameters of a process with nonzero jump 
intensities, with a positive jump occurrence correlation, but still with zero variance 
correlation. The estimates are again more-or-less consistent with the “true” parameters. Figure 
3 tries to compare the simulated jumps and their absolute sizes with the estimated jump 
probabilities. The point is that if a simulated jump size is too small than the jump can be ex 
post hardly identified and the estimated jump probability is low. This may explain the 

difference between the true jump probability 1 0.013  and the estimated value 0.0037 

(0.0127). The precision of the jump intensity estimates should improve with a larger number 
of observations. 

Generated jump-diffusion process 1 with stochastic volatility 

1  1  1,J  1,J  1  11   12   1  

0.003 0.0130 0.03 0.15 -0.14 0.98 0 0.13 
Generated jump-diffusion process 2 with stochastic volatility 
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2  2  2,J  2,J  2  21   22   2  

0.001 0.0205 -0.02 0.17 -0.21 0 0.97 0.16 
Correlations 

  
J  Z  

0 0.2326 0 
 

Estimated jump-diffusion process 1 with stochastic volatility 

1  1  1,J  1,J  1  11   12   1  

0.0026 
(4.876e-004) 

0.0037 
(0.0127) 

0.0344 
(0.0392) 

0.1737 
(0.0168) 

-0.0941 
(0.0505) 

0.9836 
(0.0053) 

0.0029 
(0.0053) 

0.1206 
(0.0161) 

Estimated jump-diffusion process 2 with stochastic volatility 

2  2  2,J  2,J  
2  21   22   2  

4.7705e-004 
(4.574e-004) 

  0.0290 
(0.0052) 

-0.0361 
(0.0223) 

0.1463 
(0.0144) 

-0.3125 
(0.0859) 

-0.0022 
(0.0080) 

0.9588 
(0.0101) 

0.1794 
(0.0197) 

Estimated correlations 
  

J  Z  

-5.1738e-004 (0.0243) 0.4026 (0.1037) 0.0249 (0.2574) 

Table 2. Generated bivariate jump-diffusion stochastic volatility process (upper table) and the MCMC 
estimated parameters. 
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Figure 3.  Blue bars below the x-axis show the simulated jumps and their absolute size, red bars above the 
x-axis show the MCMC estimated jump probabilities (left – process 1, right – process 2) 

Finally Table 3 shows parameters and estimates of a bivariate jump-diffusion process with 

correlated stochastic volatilities. We have still set some parameters to zero, e.g 12 or , in 

order to check that he estimation is able to confirm or reject significance of the individual 
parameters.  
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Generated jump-diffusion process 1 with stochastic volatility 

1  1  1,J  1,J  1  11   12   1  

0.003 0.0130 0.03 0.15 -0.07 0.99 0 0.13 
Generated jump-diffusion process 2 with stochastic volatility 

2  2  2,J  2,J  2  21   22   2  

0.001 0.0260 -0.02 0.17 -0.21 0.02 0.95 0.16 
Correlations 

  
J  Z  

0 0.3418 0 

  
Estimated jump-diffusion process 1 with stochastic volatility 

1  1  1,J  1,J  
1  11   12   1  

0.0018 
(5.261e-004) 

0.0039 
(0.0133) 

0.0256 
(0.0451) 

0.1589 
(0.0209) 

-0.0931 
(0.0613) 

0.9703 
(0.0090) 

0.0157 
(0.0125) 

0.1527 
(0.0174) 

Estimated jump-diffusion process 2 with stochastic volatility 

2  2  2,J  2,J  2  21   22   2  

0.0013 
(5.543e-004) 

0.0288 
(0.0051) 

-0.0280 
(0.0275) 

0.1800 
(0.0199) 

-0.2760 
(0.0931) 

0.0280 
(0.0099) 

0.9326 
(0.0186) 

0.1676 
(0.0254) 

Estimated correlations 
  

J  Z  

0.0079 (0.0241) 0.3621 (0.1264) -0.7194 (0.2454) 

Table 3. Generated bivariate jump-diffusion process (correlated) stochastic volatility model (upper table) 
and the MCMC estimated parameters. 

During implementation of the models many empirical tests have been performed. We have 
shown only a few to illustrate a good performance of the proposed estimation algorithm. 

3.2 FX and Stock Market Data and Empirical Results 

Our data set consists of CZK/EUR exchange rates and the Czech PX stock index values from 
Sep 1, 2004 to Feb 2, 2011 (Figure 4). Note that the CZK/EUR is quoted as the inverse of the 
normal EUR/CZK exchange rate, i.e. as a direct quotation of CZK in terms of EUR from the 
perspective of an EUR investor. The period of strong decline of the stock index and 
depreciation of CZK/EUR corresponds obviously to the financial crisis in 2007-2009. 
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Figure 4. CZK/EUR exchange rate and PX stock index value Sep 1, 2004 to Feb 2, 2011. 

Time series of daily returns (Figure 5) and 100 days moving window volatility (Figure 6) 
visually shows many jumps and overlapping periods of relatively high volatility.  
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Figure 5.  CZK/EUR exchange rate and PX stock index daily returns 
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Figure 6.  CZK/EUR (blue line) and PX (red line) 100 days moving window volatility 

Standard tests, e.g. Jarque-Bera test, reject normality of both series at the 0.1% confidence 
level (Table 4). The Person’s correlation of the two return series is slightly negative -1.21% 
with p-value 0.62, i.e. the correlation does not significantly differ from zero.  
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 CZK/EUR daily returns PX daily returns 
Mean 1.5949e-004 4.0961e-004 
Standard deviation 0.0049 0.0170 
Skewness 0.0292 -0.1639 
Kurtosis 11.2200 15.8395 
Jarque-Bera statistic 4.7357e+003 1.1561e+004 
p-value <0.001 <0.001 

Table 4. CZK/EUR exchange rate and PX stock index daily returns descriptive statistics 

It seems obvious that the normal VaR based on the assumption of normality and no 
correlation would underestimate the true risk of a combined CZK/EUR and PX investment. In 
order to improve our ability to predict the risk we are going to estimate and compare the four 
bivariate models described in Section 2. 

Model 1: Bivariate pure diffusion model (2Diff) 

The simplest model we consider is the bivariate diffusion model. Table 5 shows MCMC 
estimated coefficients based on 3000 iterations when the first 1000 have been discarded. The 
results are in line with the descriptive statistics given in Table 4. The correlation between the 
two series does not significantly differ from zero in the context of this model. 

 
k  k  

FX returns (k=1) 1.5345e-004 (1.2927e-004) 0.0049 (8.6122e-005) 
PX returns (k=2)   4.1621e-004 (4.5433e-004) 0.0172 (2.6047e-004) 
  -0.0109 (0.0265)  

 Table 5. Estimated parameters for the CZK/EUR and PX pure diffusion bivariate model 

Model 2: Bivariate jump-diffusion model (2JD) 

Table 6 shows MCMC estimates of the bivariate jump-diffusion model (23) with correlated 
jumps, but with constant volatilities. We have again used 3000 MCMC simulations, non-
informative priors, and discarded the first 1000 ones. The initial means and correlations were 

set to 0, initial diffusion volatilities  to 0.01 and jump standard deviations J to 0.1. Figure 7 

shows relatively fast convergence of the jump correlation J to a surprisingly high level over 

50% and the simulated kernel smoothed density. Note that the diffusion correlation  and the 

jump-size correlation Z do not significantly differ from 0. 
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CZK/EUR jump-diffusion process 
      

J  J  

2.2486e-004 
(9.8678e-005) 

0.0030 (1.0420e-
004) 

0.1737 (0.0281) -2.9636e-004 
(7.1327e-004 ) 

0.0095 (8.3013e-
004) 

  PX jump-diffusion process 
      

J  J  

9.9833e-004 
(3.1909e-004)  

0.0101 (3.3542e-
004)  

0.1549   
(0.0244) 

-0.0038 (0.0025)  0.0353 (0.0027)  

Correlations 


J  Z  

-0.0412 (0.0337) 0.5401 (0.0675)             0.0086 (0.0896) 

Table 6.  Estimated parameters for the CZK/EUR and PX jump-diffusion models with constant 
volatility 
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Figure 7.  Convergence and the Bayesian density of the jump correlation J  

Probably the most interesting finding is that the probabilities of jumps  are relatively high, 
over 15% for both return series. However, the outcome should not be so surprising looking at 
the very high kurtosis (Table 4) of both series. The jump-diffusion model in fact decomposes 
the distribution into a mix of two normal distributions, one with the lower standard deviation 

 and the other with a higher (more than three times) standard deviation J . While 

CZK/EUR mean jump size does not significantly differ from zero, the mean PX jump size is 
negative showing that the stock index tends to jump down rather than up, as one would 
expect. 

The high probabilities of jumps contradict to our intuition of jumps being rare events. The 
MCMC estimations give us also simulated distributions of jump occurrences and jumps sizes 
that allow us to analyze the jumps in more detail. Each run of the MCMC simulation samples 
specific jumps times and jump sizes. Hence for each day we may calculate the empirical 
probability of jump and identify days where “a jump probably happened”, i.e. where the 
probability of jump is larger than 50%. For those days it makes sense to inspect the mean 
value of the simulated jump sizes (conditional on the jump occurrence). The results are shown 
in Figure 8. It is obvious that the jumps are not distributed evenly being clustered especially in 
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the financial crises period. We will see that the jump clustering is essentially filtered out in the 
model with stochastic volatility.  
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Figure 8.  CZK/EUR and PX returns jump probabilities and mean jump sizes 

Model 3: Bivariate jump-diffusion with stochastic volatility (2JD SV) 

Before estimating the bivariate stochastic volatility model we firstly implement the univariate 
model (16) for both return series in order to inspect the relationship between the two latent 
stochastic volatilities time series.  The estimated parameters and their standard deviations 
based on 3 000 MCMC simulations are shown in Table 7. Figure 9 shows for the sake of 
illustration relatively fast convergence of the coefficient  in case of the PX return process. 

The parameter means and standard deviations in Table 7 are based on the last 2 500 
simulations discarding the first 500. Note that by introducing the stochastic volatility into the 
model the probabilities of jumps have been significantly reduced to less than 3% and the jump 
size standard deviation went up. The high value of the stochastic volatility (log-variance)  
autocorrelation coefficient  , almost 99% for CZK/EUR and almost 98% for PX, shows a 

high persistence of stochastic volatilities that is in line with other empirical studies on US 
stock market data (e.g. Jacquier et al, 1994, Eraker et al, 2003). The volatility of the stochastic 
volatility, i.e. the coefficient , around 13% for CZK/EUR and over 21% for PX, is also in the 

range estimated on US data. 

CZK/EUR univariate jump-diffusion process with stochastic volatility 
    

J  J      

1.8506e-004 
(6.374e-005)  

0.0284 
(0.0083)  

-2.2616e-004 
(0.0024)  

0.0117 
(0.0018)  

-0.1205 
(0.0545)  

0.9893 
(0.0048)  

0.1313 
(0.0193)  

PX univariate jump-diffusion process with stochastic volatility 
    

J  J      

0.0012  
(1.921e-004)  

0.0237 
(0.0068)  

0.0011 
(0.0079)  

0.0427  
(0.0066)  

-0.1957  
(0.0613)  

0.9781 
(0.0069)  

0.2119 
(0.0247)  

Table 7. Estimated parameters for the CZK/EUR and PX univariate jump diffusion models with stochastic 
volatility 
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Figure 9.  Convergence and MCMC simulated density of the parameter  for PX returns 

The latent stochastic volatilities are sampled at each MCMC simulation run and we get a 
distribution for each particular day. In order to investigate the relationship between the 
CZK/EUR and PX volatilities we use the mean estimates, specifically given by the 

equation exp / 2)ˆ (i ih  , where ih is the MCMC mean of normally distributed log iV  sampled 

values. Figure 10 shows that the mean stochastic volatility for both series copy well the 
pattern of the observed returns. The figures also explain why many jumps identified in the 
constant volatility model have been filtered out in the stochastic volatility model. 
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Figure 10.  CZK/EUR and PX returns (blue bars) and mean stochastic volatilities (red lines) 

The mean stochastic volatility series and mean estimated coefficients , ,  and  may be used 

to obtain the residuals of the two series ,
V
FX ie and ,

V
PX ie . The Pearson’s correlation of the 

residuals is relatively low 5.7% and not significant at 1% confidence level, however the 

correlation of ,FX ih and ,PX ih comes out highly significant 61.66% as indicated visually by 

Figure 10. Consequently, having parsimony in mind, it is reasonable to specify the bivariate 
jump-diffusion model with correlated stochastic volatilities just through the mutual Granger 
causality and without correlated volatility residuals, i.e. according to the model (23).  

The model is estimated by the methodology has been outlined in Section 2.4 and the resulting 
estimates are shown in Table 8. We have run again 3000 simulations, used the last 2000, and 
discarded the first 1000. Figure 11 shows relatively fast convergence of the interesting 
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coefficient 21 . The significant positive value 0.035 proves there is a Granger dependence of 

the PX stochastic volatility on the CZK/EUR stochastic volatility. On the other hand the 

coefficient 12 reflecting the causality in the opposite direction turns out not to be significant. 

This corresponds to our intuition: the FX market is more liquid and closely linked to the 
global markets while the Czech stock market liquidity is relatively low and in a sense behind 
the global FX market. It can be verified that the VAR(1) process estimated coefficients imply 
a high Pearson’s correlation around  58% close to our finding based on the univariate models.   

CZK/EUR jump-diffusion process with stochastic volatility 

1  1  1,J  1,J  1  11   12   1  

1.5188e-004 
(5.994e-005) 

0.0129 
(0.0057) 

-9.18e-004 
(0.0057) 

0.0127 
(0.0016) 

-0.2694 
(0.0972) 

0.9692 
(0.0125) 

0.0086 
(0.0087) 

0.2112 
(0.0316) 

PX jump-diffusion process with stochastic volatility

2  2  2,J  2,J  2  21   22   2  

0.0013 
(1.809e-004) 

0.0117 
(0.0048) 

-0.0199 
(0.0143) 

0.0447 
(0.0060) 

0.0220 
(0.0827) 

0.0350 
(0.0092) 

0.9582 
(0.0078) 

0.2268 
(0.0174) 

Correlations 
  

J  Z  

-0.0394 (0.0267) 0.2638 (0.1927) 0.4713 (0.3593) 

Table 8. Estimated parameters for the bivariate jump diffusion models with Granger related stochastic 
volatilities 
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Figure 11.  MCMC convergence and density of the coefficient 21 reflecting the Granger dependence 

of the PX stochastic volatility on the CZK/EUR stochastic volatility 

Finally we may inspect the behavior of jumps. It is interesting to note that the jump 
probability fell to 1.3% in case of CZK/EUR and 1.2% in case of PX returns. Figure 12 shows 
the MCMC empirical daily jump probabilities. For both series there is only one day with jump 
probability higher than 50% and a few days with jump probabilities over 20%. The stochastic 
volatility component has clearly filtered out the clustering and the jumps seem to be 
distributed evenly. There is still a positive jump occurrence correlation 0.26 and it is 
interesting to note that in this case the jump size correlation is positive 0.47 (though not 
highly significant) meaning that if there is a coincidence of jumps on both markets than the 
jumps probably go in the same direction.  
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Looking at the jump analysis in the jump-diffusion models with and without stochastic 
volatility it is obvious that jump identification strongly depends on the stochastic model 
chosen. 
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Figure 12.  CZK/EUR and PX returns jump probabilities in the context of the bivariate stochastic volatility 
model  

Model 4: Bivariate diffusion model with stochastic volatility (2SV) 

Since the estimated jump probabilities in the previous models have been low and not highly 
significant Table 9 gives, for the sake of completes, estimates of the bivariate stochastic 
volatility model without jumps. It is interesting to note that the estimated coefficients do not 
differ significantly from the results in Table 8 (with jump parameters missing). 

diffusion process FX with stochastic volatility

1  1  1,J  1,J  1  11   12   1  

1.7474e-004 
(5.2611e-
004) 

- - - -0.1981 
(0.0951) 

0.9791 
(0.0121) 

0.0041 
(0.0077) 

0.1750 
(0.0393) 

diffusion process PX with stochastic volatility

2  2  2,J  2,J  2  21   22   2  

0.0013 
(0.0013) 

   -0.0111 
(0.0867) 

0.0387 
(0.0100) 

0.9501 
(0.0105) 

0.2564 
(0.0250) 

Correlations 
  

J  Z  

-0.0371 (0.0257) - - 

Table 9. Estimated parameters for the bivariate stochastic volatility model without jumps 

3.3 Comparison of the Models  

The four estimated models can be compared using the deviance information criterion (DIC) 
measure shown in Table 10. The last two columns give the goodness-of-fit and the model 

complexity measures. For example, in case of the bivariate diffusion model Dp equals to 5 

(after rounding to units), i.e. to the number of the parameters estimated, as expected. It is 

more difficult to interpret the Dp  values in case of the other models. The high complexity of 

the Model 2 (2JD) could be explained by existence of many jumps where the size needs to be 
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in addition estimated. The high value of Dp  for the Model 4 (2SV) compared to the Model 3 

(2JD SV) is, however, slightly puzzling.  

An absolute difference in DIC over 10 is already considered important (Spiegelhalter et al, 
2002, Asai et al, 2006), and so the models with jumps and/or stochastic volatility strongly 
outperform, in terms of DIC, the pure diffusion model. The best ranked model is the Model 2 
(2JD) followed by the Model 3 (2JD SV). The difference between the DIC of 2JD and 2JDSV 
might be disappointing from the perspective of the stochastic volatility modeling and the 
estimation effort. However the 2JD model estimates many jump sizes significantly improving 
the goodness-of-fit with respect to the estimation dataset, but the jump sizes estimates do not 
have any added value for predictions of future returns (distributions). This is not the case the 
2JDSV where the last estimated stochastic volatility is used to predict future volatilities and 
return distributions.  

The ability of the different models to predict future distributions (in particular VaR) could be 
compared using a back-testing procedure. This is unfortunately unfeasible at the moment 
since one MCMC estimation takes more than one or two hours on a relatively powerful desk-
top computer and back-testing would require repeating the procedure hundreds or thousands 
of times. 

 DIC  D  Dp  

Model 1 (2Diff) -22 019 -22 024 5 

Model 2 (2JD) -25 294 -25 479 185 

Model 3 (2JD SV) -24 369 -24 430 61 

Model 4 (2SV) -24 068 -24 228 160 

 Table 10. Deviance information criterion of the four estimated bivariate models 

VaR Estimations 

We are going to show VaR estimations given by the four tested models and by a benchmark 
model to illustrate importance of the model choice. Table 11 provides a comparison of the 

estimates VaR measures for the sum of lognormal returns /CZK EUR PXr r   calculated using the 

different models and by the methodology described in Section 2.5.  . The returns could be 
interpreted for example as returns on a PX stock index investment from the perspective of a 
EUR based investor as of February 2, 2011.  The VaR measure has been calculated in 1, 10, 
and 30 days horizon, on the 95% and 99% probability level, and conditional on the point 
parameter estimates (Table 5 -Table 9 and the least mean variance for the SV models) or on 
the corresponding MCMC parameter distributions. The last line gives EWMA VaR estimates 
used frequently in practice, for the sake of comparison with our models. It is based on 
exponentially weighted moving average (EWMA) covariance matrix with the weight set at 
0.97. The number of Monte Carlo simulations has been set to 40 000. 

Since the jump-diffusion (2JD) model is using constant volatilities, it is comparable rather to 
the diffusion model (2Diff), corresponding to a standard normal VaR estimate. On the other 
hand the jump-diffusion model with stochastic volatility (2JDSV) starts with the last 
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estimated volatility (as of Feb 2, 2011) and so it can be meaningfully compared rather against 
the benchmark EWMA model that works a recent volatility trend.  

The 2JD VaR does not differ significantly from the 2Diff VaR on the 95% probability level, 
but, not surprisingly, the difference is more significant on the 99% probability level and in the 
short 1- day horizon. Over longer time horizons the jumps mix better with the normal returns 
and the two approaches become closer. In case of the jump-diffusion model with stochastic 
volatility we observe the opposite. The 2JDSV and 2SV VaR is similar to EWMA VaR in the 
1-day horizon, but the difference becomes more pronounced in longer time horizon due to the 
stochastic volatility effect. The 30 days JDSV and 2SV VaR on the 99% probability level 
exceeds the EWMA VaR by almost 40%.  

It should be pointed that no definite conclusion can be drawn from the differences in VaR 
estimates. Nevertheless, if the true process was a pure diffusion one then the choice of the 
model should not matter. Significant parameters of the models with jumps and stochastic 
volatilities, the goodness-of-fit comparison, and the different VaR values demonstrate that the 
choice model is important. 

VaR / 
Bayes VaR 

 (1,95%)  (1,99%)  (10,95%)  (10,99%) (30,95%) (30,99%) 

Model 1 
(2Diff) 

0.0299 /  
0.0297 

0.0421 /  
0.0417 

0.0985 / 
0.0986 

0.1361 / 
0.1361 

0.1780 / 
0.1787 

0.2451 / 
0.2433 

Model 2 
(2JD) 

0.0240 / 
0.0242 

0.0520 / 
0.0532 

0.0969 / 
0.0962 

0.1414 / 
0.1405 

0.1743 / 
0.1781 

0.2437 /  
0.2480 

Model 3 
(2JDSV)  

0.0177 
0.0179 

0.0266 
0.0284 

0.0654 
0.0678 

0.1041 
0.1105 

0.1272 
0.1280 

0.1957 
0.1988 

Model 4 
(2SV) 

0.0213 / 
0.0214 

0.0293 / 
0.0300 

0.0763 / 
0.0769 

0.1040 / 
0.1086 

0.1499 / 
0.1505 

0.2048 / 
0.2092 

EWMA 0.0185  0.0262  0.0586  0.0828  0.1014  0.1435  

Table 11.  Comparison of  Value at Risk in the 1, 10, or 30 day horizon, based on point parameter estimates / 
Bayes simulation,  and on the 95%, 99% probability level estimated using the different models   

 

3 Conclusion 

We have proposed and tested a bivariate jump-diffusion model with stochastic volatilities 
where the jump occurrence, jump-sizes, and the volatilities are, in general, correlated. The 
stochastic volatility correlation is captured through the Granger causality in both directions.  
Our proposed MCMC estimation technique extends the one of Jacquier et al (2007). The tests 
have demonstrated ability of the algorithm to recover consistently the true parameters used to 
generated testing data. The model has been, for the sake of empirical illustration, applied on 
the CZK/EUR and the Czech stock index PX data (2004-2011). The results show that there is 
Granger causality in stochastic volatility going from the CZK/EUR market to the Czech stock 
market but not vice versa. The estimated probabilities of jumps are around 1.2%. The jumps 
and jump sizes appear to be strongly correlated. We have compared the model with the pure 
diffusion model, with the stochastic volatility model without jumps, and with the jump-
diffusion model with constant volatility. It is interesting to note that the probabilities of jumps 
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in the pure jump diffusion model differ dramatically being more than 15% for both processes, 
if the volatility is constant. The four tested models have been compared applying the deviance 
information criterion (DIC) with the pure jump-diffusion and the stochastic volatility jump-
diffusion models performing the best. However, it can be argued that the proposed stochastic 
volatility jump-diffusion model giving forward looking volatility estimates is the most 
appropriate for VaR calculations and generally for future returns distribution modeling.  

The research can be extended in several directions: the model and the estimation technique 
can be applied to other time series, to high frequency data, and generalized to the general 
multivariate case requiring algorithm efficiency improvements. 
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