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Abstract:

Quantitative methods to assess the creditworthiness of the loan applicants are

vital for the profitability and the transparency of the lending business. With the

total loan volumes typical for traditional financial institutions, even the slightest

improvement in credit scoring models can translate into substantial additional

profit. Yet for the regulatory reasons and due to the potential model risk, banks

tend to be reluctant to replace the logistic regression as an industrial standard

with the new algorithms. This does not stop researchers from examining such

new approaches, though. This thesis discusses the potential of the support vector

machines, to become an alternative to logistic regression in credit scoring. Using

the real-life credit data set obtained from the P2P lending platform Bondora, the

scoring models were built to compare the discrimination power of support vector

machines against the traditional approach. The results of the comparison were

ambiguous. The linear support vector machines performed worse than logistic

regression and their training consumed much more time. On the other hand,

support vector machines with non-linear kernel performed better than logistic

regression and the difference was statistically significant at 95% level. Despite

this success, several factors prevent SVM from the widespread applications in

credit scoring, higher training times and lower robustness of the method being two

of the major drawbacks. Considering the alternative algorithms which became

available in the last 10 years, support vector machines cannot be recommended

as a standalone method for credit risk models.
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Abstrakt:

Využit́ı kreditńıch model̊u v rozhodováńı o přiděleńı p̊ujček retailovým zákazńı-

k̊um je dnes ve finančńım sektoru již běžnou záležitost́ı a představuje d̊uležitou

složku pro udržeńı ziskovosti i transparentnosti celého procesu. Při objemech,

s nimiž poskytovatelé úvěr̊u běžně pracuj́ı, představuje i sebenepatrněǰśı zlepšeńı

účinnosti použ́ıvaných model̊u významné dodatečné zisky. Finančńı instituce

však (z d̊uvod̊u regulatorńıch pravidel i z opatrnosti kv̊uli možnému modelovému

riziku) preferuj́ı pro tyto účely logistickou regresi před novými a potenciálně

účinněǰśımi metodami. To však neznamená, že by výzkum nových př́ıstup̊u měl

ustat. Podp̊urné vektorové stroje (SVM) patř́ı k těmto alternativńım př́ıstup̊um.

Tato práce zkoumá možnost jejich uplatněńı při tvorbě kreditńıch model̊u. Sro-

vnává výkonnost model̊u založených na SVM oproti tradičńımu př́ıstup pomoćı

logistické regrese, a to na reálných kreditńıch datech źıskaných z platformy za-

měřené na P2P p̊ujčky. Lineárńı verze podp̊urných vektorových stroj̊u byla v ro-

zlǐseńı dobrých a špatných dlužńık̊u méně úspěšná než klasická logistická regrese.

Naopak SVM model s nelinárńı jádrovou funkćı byl schopen logistickou regresi

překonat a tento rozd́ıl ve výkonnosti byl statisticky významný. Navzdory tomuto

d́ılč́ımu úspěchu se ale praktické využit́ı podp̊urných vektorových stroj̊u v tomto

oboru poj́ı s celou řadou obt́ıž́ı, mezi něž patř́ı dlouhá doba vývoje modelu a jeho

nižš́ı robustnost. Vezmeme-li v úvahu nové algoritmy, s nimiž odborná literatura

přǐsla v posledńıch 10 letech a které jsou schopny soustavně dosahovat lepš́ıch

výsledk̊u, nelze metodu podp̊urných vektorových stroj̊u pro využit́ı v kreditńıch

modelech doporučit.

Kĺıčová slova:

logistická regrese, podp̊urné vektorové stroje, svm, kreditńı skóring, p2p p̊ujčky
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Introduction

Credit scoring is a standard method of assessing the creditworthiness of the loan

applicants in the banking industry. Over time, objective quantitative tools have

been developed and adopted to suppress the subjective ad-hoc elements in the

decision process, strengthen the accountability and substitutability and reduce

the chances for corruption.

Various statistical and computer science methods can be used to build an ob-

jective model to differentiate the loan applicants and to estimate the probability

of their default. Support Vector Machines derived and proved by Vapnik is an

example of such a method.

One of the principal goal of my thesis is to examine the performance of support

vector machines (SVM) in credit scoring and to compare them with the logistic

regression (LR) which still remains the industry standard in banking. In the first

chapter, I will show that SVM and LR share some common properties and that

they both belong to a wide family of linear classifiers.

The second chapter is dedicated to the mathematical derivation of the support

vector machines as it was developed throughout 30 years of their evolution: from

the the hard maximum-margin classifier, which works only for the linearly sepa-

rable data, to the current form using the soft margin and the kernel trick to cover

non-linear and noisy data.

The third chapter is focused on the practical problems of the credit scoring models

development: how to measure the performance, how to prepare the data set, how

to evaluate different models and choose the best one among all possibilities.

The fourth chapter summarizes the current state of knowledge in the credit scor-

ing, based on the peer-reviewed literature with a special focus on the support

vector machines.

The banking industry is, due to the understandable carefulness and the model

risk, reluctant to adopt new approaches in the credit scoring, unless it introduced

a major performance advantage. Therefore, I concentrate on the application of

SVMs in the newly emerging sector of the loan business: the peer-to-peer lending,

which as a new phenomenon is described in detail the fifth chapter.
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The P2P lending is characteristic for the prevailing presence of the amateur in-

vestors, whose strategy is based either on a blind diversification or on a näıve and

rather empirical credit scoring that embodies one or two factors. Credit scoring

based on the objective and quantitative methods could under such conditions

lead to the excess returns when applied by a concerned investor.

The last chapter describes the procedures and methods used to build a support

vector machine for credit scoring on a real data set obtained from one of the

leading P2P platforms in the Europe. Performance of the model is discussed as

well as the comparison with the industry-standard logistic regression.

As the chosen P2P platform is open for small investors from all over the Europe,

my findings could be directly applied in practice by anyone willing to build an

investment strategy on the top of them. This thesis is, however, written solely

for the educational purposes and such proceeding is therefore not recommended.
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1. Linear classifiers

The main task of the credit scoring is simple: build a model, which will be able to

distinguish between a good creditor and a bad one. Or put in other words: take

the past credit data set and use them to learn the rules generally applicable for

the future discrimination between the two creditor classes, with minimal number

of mistakes both in false positives and false negatives.

The task to assign an observation to its respective class is called Classification.

Since for the purpose of the credit scoring, there are only two possible categories

(e.g. 0 = good creditor, 1 = bad creditor), this specific setting of the classification

is referred as Binary classification. Apart from the credit scoring, the binary

classification has a wide variety of applications; no wonder there have been several

different approaches developed in the literature.

No fewer than two scientific fields are intersecting in this task: Statistics and

Machine Learning.1 While the methods and scope of these fields may be different

in general, it is practically impossible to draw a clear line between them in the

context of the data classification problem.2

Machine Learning accents the ability to make a correct prediction, while Statistics

accents the ability to describe the relationships among the model variables and

to quantify the contribution of each one of them.

1being part of a more general Computer Science field

2Consider for example the Logistic Regression, which is frequently used for classification.

Logistic regression is widely considered to be a statistical tool and is still a standard performance

benchmark for the credit scoring in the real-life banking [16]. On the other hand, Support Vector

Machines (SVMs), which are the main topic of this thesis, are commonly referred as a machine

learning tool. Yet they are actually very similar to each other: they both have a same goal

and purpose and they both can be expressed as a hyperplane separating the space into two

subspaces. The main practical difference between them lies in the terminology. Due to the key

focus of my thesis, I will prefer the machine learning terminology, where appropriate.
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The classification problem is sometimes called supervised learning, because the

method operates under supervision [58]. As mentioned above, the learning process

in the credit scoring usually begins with some historical, labelled3 observations.

These observations are often referred as the training set.

The goal of the supervised learning is to derive a mapping (function) which not

only can correctly describe the data in the training set, but more importantly

is able to generalize from the training set to the unobserved situations. Since

the main application of the classifier models is the prediction, the generalization

ability of the learning algorithms are by far the most important property that

distinguishes a good classifier from the bad one. [28]

The function derived from the supervised learning introduces a border between

two classes - we say it forms a decision boundary or decision surface. Depend-

ing on the shape of this decision boundary we distinguish linear classifiers and

non-linear classifiers. The linear classifiers represent a wide family of algorithms,

whose common characteristic is that the decision is based on the linear combi-

nation of the input variables [51, p. 30]. All the classifiers described and used

in this thesis, namely Logistic regression and Support vector machines, can be

regarded as members of this wide family.

Fisher in his classic paper [23] introduced his linear discriminant, which was

probably the first linear classifier. The Iris Data set [2], published in the same

paper to demonstrate the power of his linear discriminant, became eventually the

most cited classification data set, used widely for educational and explanation

purposes. A subset of this data set is presented at Figure 1. It demonstrates a

simple example of the binary classification problem with 2 explanatory variables

and 100 observations. The goal of the classification is to draw a line that could

serve as a borderline between the two different classes. Since the data are clearly

linearly separable, it does not appear to be much a challenging task.

Definition 1.1. Two subsets X and Y of Rd are said to be linearly separable

if there exists a hyperplane of Rd such that the elements of X and those of Y lie

on opposite sides of it. [20]

3i.e. we know, whether the loan applicant turned to be good or bad

4
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Figure 1: An example of a linearly separable binary classification problem based on

the Fisher Iris Data (citation and detail in the text). In principle there is an infinite

number of lines that could serve as a decision boundary perfectly separating the two

classes.

In principle, there is an infinite number of lines capable of performing this task.

However, we can intuitively feel, that not all of them are equally good at it and

that there are lines which accomplish this task better than others. Before we

define what “good” and “better” means in this context, let’s have a closer look

at the Iris dataset.
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1.1 Geometric interpretation of the data points

As already mentioned, there are 100 data points (observations) with 2 input

variables (sepal width and sepal length in cm) and one binary class variable

(setosa/versicolor). The mere fact that, in Figure 1, we chose to display the data

set as a two-dimensional scatter plot implicitly assumes, that each property can

be regarded as a dimension in a coordinate system. Each data point can therefore

be interpreted geometrically, as a point in a coordinate system.

This can be taken even further, though. Each data point can be visualised as a

vector rooted in the origin of a coordinate system.4 [28, p. 33]

Definition 1.2. Vector is a directed line segment, that has both length and

direction. [40, p. 355]

Definition 1.3. Given the components of vector, a = (a1, a2, . . . , an), the length

or norm of a vector a, written as ‖a‖, is defined by:

‖a‖ =
√
a21 + a22 + · · ·+ a2n (1.1)

The geometric interpretation of vectors is conceptually very advantageous. Ef-

fectively, we have converted our data universe into a vector space. By allowing

this, we can compute new objects using algebraic vector operations. More, it is

possible to calculate the dot products of two vectors which can then serve as a

measure of similarity between two observations.5 [28, p. 34]

Definition 1.4. Given two vectors a and b from R, the dot product or inner

product of a · b is:

a · b =
n∑
i=1

aibi (1.2)

Remark 1.1. There is a relation between the length of a vector and the dot

product of a vector with itself:

‖a‖ =
√
a · a (1.3)

4(0,0) in this case

5The dot product of two vectors computes a single scalar value, zero for orthogonal vectors,

which can be interpreted as no similarity at all.
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To construct a decision boundary in this example, one has to find a line such

that it will separate one class of the training data set from the other one.

Definition 1.5. A set of points (x1, x2) ∈ R2 satisfying equation

w1x1 + w2x2 + b = 0 (1.4)

is called a line.

Remark 1.2. Note that we may express the equation (1.4) in the vector form as

w · x+ b = 0 (1.5)

The beauty of the vector form (1.5) lies in the fact, that it is valid in general

for any number of dimensions, i.e. for the data sets with more than just two

explanatory variables.

In the three-dimensional settings, if we let w,x ∈ R3, that is w = (w1, w2, w3)

and x = (x1, x2, x3), the equation (1.5) will not change and the subset of all

points satisfying this equation is called a plane.

More generally, in n-dimensional space, we call the subset of all points satisfying

(1.5) a hyperplane. A hyperplane is an affine subspace of dimension n− 1 which

divides the space into two half spaces. [14, p. 10]

The notation w and b was chosen with an agreement of the majority of the

SVM literature; w standing for weight vector and b for bias, both terms coming

originally from the perceptron research, which has historically much common

with the support vector machines [14, p. 10]. The statistics literature usually

refers both as parameters.

1.2 Classification formalized

The classification problem can be formalized as follows:

• Let the dot product space Rn be the data universe with vectors x ∈ Rn as

objects

• Let S be a sample set such that S ⊂ Rn

• Let f : Rn → {+1,−1} be the target function

7



• Let D = {(x, y) | x ∈ S ∧ y = f(x)} be the training set

Find a function f̂ : Rn → {+1,−1} using D such that

f̂(x) ≈ f(x) (1.6)

for all x ∈ Rn. Depending on n, we construct line, plane or hyperplane, that

separates classes +1 and −1 as best as possible. The resulting linear decision

surface is then used to assign new objects to the classes. [55, p. 1], [28, p. 50]

Vectors x are usually referred in the literature as patterns, cases, instances or

observations ; values y are called labels, targets or outputs. [55, p. 1]

As already mentioned, we call this problem binary classification problem. It

is caused by the fact, that the output domain Y = {+1,−1} consists of two

elements. In more general cases, for Y = {1, 2, . . . ,m}, the task is called m-

class classification. For Y ⊆ R we speak about regression. [14, p. 11] While the

support vector machines can also be used, with some simple modifications, for

the m-class classification and for the regression, these modifications hardly have

any use in the context of the credit scoring and are not a subject for this thesis.

Having the normal vector w and bias b from (1.5), the task to classify new

observation a is quite simple. Should the observation belong to the +1 class, the

point will lie above the decision surface and the value of (1.5) will be positive. On

the contrary, all observations belonging to the −1 class will lie below the decision

surface and the value of (1.5) will be negative. The decision function f̂ can be

constructed as follows [28, p. 50-51]

f̂(x) =

+1 if w · x+ b ≥ 0

−1 if w · x+ b < 0
(1.7)

That is, by defining the sign function for all k ∈ R as

sgn(k) =

+1 if k ≥ 0

−1 if k < 0
(1.8)

the linear decision function for w,x ∈ Rn, b ∈ R can be constructed as

f̂(x) = sgn(w · x+ b) (1.9)

The situation is clearly demonstrated in Figure 2.

8



The key problem lies in the determination of the appropriate weight vector w

and bias b. There are basically two approaches to this job.

The generative learning aims to learn the joint probability distribution over all

variables within a problem domain (inputs x and outputs y) and then uses the

Bayes rule to calculate the conditional distribution p(y|x) to make its predic-

tion. Methods like naive Bayes classifier, Fisher’s discriminant6, hidden Markov

models, mixtures of experts, sigmoidal belief networks, Bayesian networks and

Markov random fields belong to this class of models. [38]

The discriminative learning does not attempt to model the underlying probability

distributions of the variables and aims only to optimize a mapping from the

inputs to the desired outputs, i.e. the model learns the conditional probability

distribution p(y|x) directly. These methods include perceptron, traditional neural

networks, logistic regression and support vector machines. [38]

Discriminative models are almost always to be preferred in the classification prob-

lem. [47]

All these methods generate a linear decision boundary. That is, the boundary

between the classes in the classification problem can be expressed in the form of

the equation (1.5).

For example, the first and simplest linear classifier, the aforementioned Fisher’s

discriminant, attempts to find the hyperplane (w, b) on which the projection of

the training data is maximally separated. That is to maximize the cost function

F =
(m+ −m−)2

σ2
+ + σ2

−
(1.10)

where mi is the mean and σi is the standard deviation of the projection of the

positive and negative observations. [14, p. 20] The decision boundary is then

perpendicular to this hyperplane.

6Also called as Linear discriminant analysis
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1.3 Logistic regression

Although its name would indicate otherwise, the logistic regression also belongs

to the linear classifiers. Thanks to its very good performance and a long history

of successful utilization, it is widely acknowledged that the logistic regression sets

the standard against which other classifications methods are to be compared.7 [22]

This thesis will not be an exception and it also uses the logistic regression as an

etalon.

Unlike the classical linear regression where the response variable can attain any

real number, the logistic regression builds a linear model based on a transformed

target variable that can attain only values in the interval between zero and

one [58]. Thus the transformed target variable can be interpreted as a proba-

bility of belonging to the specific class. For binary classification problem, the

model is especially simple, comprising just single linear function [33].

log
P (Y = +1 | X = x)

P (Y = −1 | X = x)
= w · x+ b (1.11)

The maximum likelihood estimation (MLE) method is usually used to find the

parameters w and b, using the conditional likelihood of Y given the X. [33]

The left-hand side of (1.11) is called the log-odds ratio. Note, that in the situation

when both probabilities, the one in the numerator as well as the one in the

denominator, will be equal to 0.5, the log-odds ratio is zero. The equation will

then simplify to (1.5). This is the equation describing the decision boundary in

the logistic regression model; the set of points where the logistic regression is

indecisive.

The difference in performance among the various linear classifiers arises from its

different distribution assumptions or from the method used to the estimation of

the parameters of the decision boundary (w, b). When we return to the geomet-

rical interpretation of the input data, we can realize, that:

• If established on reasonable assumptions, the boundary lines generated by

different linear classifiers should be quite similar. An example of two deci-

sion boundaries on our example data set is presented in the Figure 2.

7This opinion, however, has recently been challenged in [42]. Other, more powerful classifiers

were proposed as a norm for the performance comparison in future research instead.
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• There is an upper bound to the performance of ANY linear classifier. In

every binary classification problem, there exists a single line that best sep-

arates the two classes of data.

The reason, why some classifiers systematically outperform others in applications

using the real data sets, depends on 3 key points. How well does the classifier

handle:

1. the linearly inseparable data.

2. the random noise in the data and the outliers.

3. the non-linear relationships in the data.

As will be shown in the next chapter, the strength of the Support vector machines

when compared to other linear classifiers lies in the fact that (1) it can separate

linearly inseparable data, (2) it is almost immune against outliers, (3) it can fit

non-linear data thanks to the technique generally referred as Kernel trick. The

logistic regression, for comparison, lacks the last ability.
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Figure 2: The sample data set with two possible linear decision functions - one obtained

with the logistic regression, the second one with the support vector machines. Although

the lines are not identical, they both could be regarded as satisfactory models to classify

the iris flowers. It can be proved from the Vapnik-Chervonenkis theory that the decision

surface obtained with the support vector machines is the optimal linear classifier under

the condition that “optimal” is defined in terms of structure risk minimization.
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2. Support vector machines

Support vector machines present a unique combination of several key concepts [57]:

1. Maximum margin hyperplane to find a linear classifier through optimization

2. Kernel trick to expand up from linear classifier to a non-linear one

3. Soft-margin to cope with the noise in the data.

This chapter describes the derivation of the support vector machines as the max-

imum margin hyperplane using the Lagrangian function to find a global extreme

of the problem. First, hard-margin SVM applicable only to linearly separable

data is derived. Primal and dual form of the Lagrangian optimization problem

is formulated. The reason, why the dual representation poses significant advan-

tage for further generalization is explained. Further, a non-linear generalization

using kernel functions is described and the ”soft-margin” variation of algorithm,

allowing for noise, errors and misclassification, is finally derived.

2.1 Maximum margin hyperplane

Let us start with the assumption, that the training data set is linearly separable.

We are looking for the hyperplane parameters (w, b), so that the distance between

the hyperplane and the observations is maximized. We shall call the Euclidean

distance between the point xi and the hyperplane as geometric margin.

Definition 2.1. The geometric margin of an individual observation xi is given

by the equation

δi =
yi(w · xi + b)

‖w‖
(2.1)

Note, that the equation (2.1) really does correspond to the perpendicular distance

of the point,8 only the multiplier yi seems to be superfluous. But recall that yi

assigns either +1 or -1. Its only purpose in the equation is to assure the distance

to be a non-negative number. [44]

8See [48, p. 161] for details and proof.
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Definition 2.2. Given the training set D, the geometric margin of a hyper-

plane (w, b) with respect to D is the smallest of the geometric margins on the

individual training observations: [44]

δ = min
i=1...m

δi (2.2)

If we are looking for the optimal separating hyperplane, our goal should be to

maximize the geometric margin of the training - i.e. to place the hyperplane

such that its distance from the nearest points will be maximized. However, this

is hard to do directly as such an optimization problem is a non-convex one. [44]

Therefore, the problems needs to be reformulated before we can move forward.

Definition 2.3. The functional margin of an individual observation xi is given

by

δ̂i = yi(w · xi + b) (2.3)

Definition 2.4. Given a training set D, the functional margin of (w, b) with

respect to D is the smallest of the functional margins on the individual training

observations. [44]

δ̂ = min
i=1...m

δ̂i (2.4)

Note, that there is a relationship between geometric margin and the functional

margin:

δ =
δ̂

‖w‖
(2.5)

Also note, that the geometric margin is scaling invariant - replacing the parame-

ters (w, b) with (2w, 2b), for instance, will not change the results. The opposite

is true for the functional margin. Therefore we may impose an arbitrary scal-

ing constraint on w conveniently to suit our needs. We will set the scaling so

that the functional margin is 1 and maximize the geometric margin under this

constraint. [44]

δ̂ = 1, (2.6)

When we want to maximize the geometric margin, from (2.5) it follows that we

need to maximize the term 1
‖w‖ . Such a task is equal to the minimization of ‖w‖

in the denominator. Yet this task is still quite a difficult one to solve, as by (1.1)

it would involve the terms in a square root.
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Figure 3: Geometric margin and maximum margin hyperplane (line in 2-D). The solid

line separates two classes (filled and empty circles) and is fully defined by the vector of

weights w which is perpendicular to the line and bias b, which determines the position

of the line with respect to the origin. The distance between each point and the line is

called geometric margin δi and defined in (2.1). There will always be some points that

are closest to the line (marked red). Using the appropriate scaling (2.6), their distance

can be set to 1
‖w‖ . In further steps, the goal is to maximize this distance. Credits: Yifan

Peng, 2013 [49].

Nevertheless, it is possible to replace this term by 1
2
‖w‖2 without changing the

optimal solution. 9 The multiplier 1
2

is added for the mathematical convenience

in later steps and again, does not affect the position of the extreme.

Finally, applying (1.3), the objective function to be minimized is

Φ(w, b) =
1

2
w ·w (2.7)

It is necessary to ensure that the equation (2.4) holds when the objective function

is minimized. The functional margin of each individual observation must be equal

9Optimization over the positive values ‖w‖ is invariant under the transformation with the

square function. In general, x2 is a monotonic function for x ≥ 0. Therefore optimizing over

x2 is same as optimizing over x. [28, p. 81]
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to or larger than the functional margin of the whole dataset.

yi(w · xi + b) ≥ δ̂, ∀i (2.8)

By substituting (2.6), we have

yi(w · xi + b) ≥ 1, ∀i (2.9)

This inequality poses a constraint to the optimization problem (2.7). [44]

The solution of this problem will be a linear decision surface with the maximum

possible margin (given the training dataset). The objective function is clearly

a convex function which implies that we are able to find its global maximum.

The entire optimization problem consists of a quadratic objective function (2.7)

and linear constraints (2.9) and is therefore solvable directly by the means of the

quadratic programming. [28, p. 82]

2.2 Lagrangian methods for optimization

Since the means of the quadratic programming are usually computationally in-

efficient when dealing with large data sets10, we will continue solving this opti-

mization problem using the Lagrangian methods.11

Let us start more generally and then apply the mathematical theory to the prob-

lem of finding the maximum-margin hyperplane.

10thousands or tens of thousands of observations

11This whole section of my work is based mostly on the online videolecture of professor

Andrew Ng from the Stanford University [45] who (along with many other lecturers from the

most prominent universities) made his knowledge freely available under the Creative Commons

license to people from all over the world. For that I express him (them) my deepest gratitude.
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2.2.1 Primal problem

Consider the optimization problem

min
w

f(w)

s.t. gi(w) ≤ 0

hi(w) = 0

(2.10)

The minimization is constrained by an arbitrary number of equality and inequality

constraints.12 One method to solve such a problem consists in formulating a

derivative problem, that has the same solution as the original one. Define the

generalized Lagrangian function of (2.10) as

L(w, α, β) = f(w) +
∑
i

αigi(w) +
∑
i

βihi(w) (2.11)

Further define

θP (w) = max
α,β;αi≥0

L(w, α, β) (2.12)

This allows as to formulate the so called primal optimization problem, denoted

by subscript P on that account:

p∗ = min
w

θP (w) = min
w

max
α,β;αi≥0

L(w, α, β) (2.13)

Note that the function θP value assumes plus infinity, in case any constraint from

(2.10) does not hold. If gi(w) > 0 for any i, (2.12) can be maximized by simply

setting α = +∞. If on the other hand hi(w) 6= 0, (2.12) is maximized by setting

β to plus or minus infinity (depending on the sign of the function hi).

If all the constraints hold, θP takes the same value as the objective function in

the original problem, f(w). Provided both constraints hold, the third equation

term in (2.11) is always zero and the second term is also maximized when it is

set to zero by appropriate setting of weights αi. Thus we have

12Note, that (2.10) embodies a very broad class of problems. For example, any maximization

problem can be transformed to the minimization, since maxx = min−x or maxx = min 1
x ,

if defined. Also any constrained in the form g(x) ≥ 0 can be converted to the form of (2.10)

multiplying by (-1) and every constraint in the form h(x) = b can be transformed by subtracting

b to the desirable form.
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θP (w) =

f(w) if constraints are satisfied

+∞ otherwise
(2.14)

It is obvious that (2.13) is, indeed, equal to the original problem (2.10).

2.2.2 Dual problem

We could solve the primal problem, but when applied to our task, the properties

of the algorithm would not bring much benefits. Instead, for the sake of the

forthcoming solutions, let us define a different optimization problem by switching

the order of minimization and maximization.

θD(α, β) = min
w
L(w, α, β) (2.15)

The subscript D stands for dual and it will be be used to formulate the so called

dual optimization problem:

d∗ = max
α,β;αi≥0

min
w
L(w, α, β) = max

α,β
θD (2.16)

The value of the primal problem p∗ and the dual problem d∗ is not necessarily

equal. There is a generally valid relationship between maximum of minimization

and minimum of maximization

d∗ ≤ p∗ (2.17)

The difference between primal and dual solution, p∗−d∗ is called the duality gap.

As follows from (2.17), the duality gap is always greater than or equal to zero.

Certain conditions have been formulated that (if met) guarantee the duality gap

to be zero, i.e. under such conditions, the solution of the dual problem equals to

the solution of the primal one.

Definition 2.5. Suppose f and all functions gi are convex and all hi are affine.

Suppose that the constraints are strictly feasible (i.e. there exists some w so

that gi(w) < 0 for all i). Then there exist w∗, α∗, β∗ so that w∗ is the solution

to the primal problem, α∗, β∗ is the solution to the dual problem, p∗ = d∗ =

L(w∗, α∗, β∗) and w∗, α∗, β∗ satisfy following Karush-Kuhn-Tucker (KKT)

conditions [44]
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∂L
∂wi

= 0, i = 1, . . . , n (2.18)

∂L
∂βi

= 0, i = 1, . . . , n (2.19)

α∗i gi(w
∗) = 0, i = 1, . . . , n (2.20)

gi(w
∗) ≤ 0, i = 1, . . . , n (2.21)

α∗i ≥ 0, i = 1, . . . , n (2.22)

Remark: For its specific importance, KKT condition (2.20) is often referred as

complementary condition.

2.2.3 Application to maximum margin hyperplane

Let us return to our original task defined by equations (2.7), (2.9). The constraint

can be rewritten in order to match the form of (2.10)13

gi(w) = −yi(w · xi + b) + 1 ≤ 0 (2.23)

The Lagrangian of the objective function (2.7) subject to (2.9) will be, according

to (2.11)

L(w,α, b) =
1

2
w ·w −

m∑
i=1

αi (yi(w · xi + b)− 1) (2.24)

The dual can be found quite easily. To do this, we need to first minimize L. [44]

By (2.18) we take the partial derivatives of L with respect to w and b

w =
m∑
i=1

αiyixi (2.25)

m∑
i=1

αiyi = 0 (2.26)

Substituting these equations into (2.24) and simplifying the result

L(w,α, b) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj xi · xj (2.27)

13Note, that there are no equality constraints in this task, so there will be no hi terms.
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This equation was obtained by minimizing L with respect to w and b. [44] Ac-

cording to (2.16), this expression needs to be maximized now. Putting it together

with (2.22) and (2.26), the dual optimization problem is

max
α

(
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj xi · xj

)

s.t.
m∑
i=1

αiyi = 0

αi ≥ 0, i = 1, . . . , l

(2.28)

It can be shown, that KKT conditions are met and that (2.28) really presents a

solution to the original problem. [28]

One interesting property should be pointed out at the moment. The constraint

(2.9) actually enforces the fact that the functional margin of each observation

should be equal to or greater than the functional margin of the dataset (which

we set by (2.6) to one).

It will be exactly one only for the points closest to the separating hyperplane. All

other points will lie further and therefore their functional margin will be higher

than one. By the complementary condition (2.20) the corresponding Lagrangian

multipliers αi for such points must be equal to zero. [14, p. 97]

Therefore the solution of the problem, the weight vectorw in (2.25), depends only

on a few points with non-zero αi that lie closest to the separating hyperplane.

These points are called support vectors. [14, p. 97]

The solution of the dual problem (2.28) leads to an optimal vector α∗, which can

be immediately used to calculate the weight vector of the separating hyperplane

w using 2.25. Since most of the αi coefficients will be zero, the weight vector will

be a linear combination of just a few support vectors.

Having calculated the optimal w∗, the bias b∗ must be found making use of the

primal constraints, because the value b does not appear in the dual problem: [14,

p. 96]

b∗ = −maxyi=−1w
∗ · xi + minyi=+1w

∗ · xi
2

(2.29)

From (1.9) this leads to a decision function that can be used to classify new
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out-of-sample observation x:

f̂(x) = sgn

(
m∑
i=1

α∗i yixi · x− b∗
)

(2.30)

As stated above, this classifier is determined completely only by the support

vectors. Because of this property, it is called a support vector machine. To

be more precise, a linear support vector machine, since it is based on a linear

decision surface. [28, p. 102] It is able to classify linearly separable data only.

On the other hand, unlike some other classifiers, it is guaranteed to converge and

find the hyperplane with the maximum margin. Since the optimization problem

is a convex and KKT conditions are met, there is always a unique solution and

it is a global extreme.14

There is one remarkable property in the decision function (2.30) that is worthy

of our special attention. The observations only appear there as dot products

between the input vectors. This opens a door to the use of a special technique

that researcher usually refer as “kernel trick”. Owing to it, the linear support

vector machine derived in this section can be extended and generalized to fit

almost any non-linear decision surface.

2.3 Kernels and kernel trick

The problem with the real life data sets is that the relationship among the input

variables are rarely simple and linear. In most cases some non-linear decision sur-

face would be necessary to correctly separate the observations into two groups.

This necessity, on the other hand, noticeably increases the complexity and com-

putational difficulty of such a task.

Instead, the support vector machines implement another conceptual idea: the

input vectors are mapped from an original input space into a high-dimensional

feature space through some non-linear mapping function chosen a priori. The

linear decision surface is then constructed in this feature space. [12]

The underlying justification can be found in Cover’s theorem [13], which may be

qualitatively expressed as:

14Even some advanced classification algorithms, like neural networks, must face the problem

that they may get “stuck” in the local extreme and find only a suboptimal solution.
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A complex pattern-classification problem, cast in a high-dimensional

space nonlinearly, is more likely to be linearly separable than in a

low-dimensional space, provided that the space is not densely popu-

lated. [34, p. 231]

Because now we want to operate in the feature space rather than in the original

input space, we can slightly modify the original equation (2.28) and replace the

plain dot products xi ·xj with φ(xi)·φ(xj). By φ(·) we denote some appropriately

chosen mapping function.

Consider that the transformation φ(x) may be very complex, complicated. The

results could belong to high dimensional, in some cases even infinitely dimensional

spaces. Such transformations would be computationally very expensive or even

impossible to do.

The key idea of this concept is contained in the fact, that to find the maxi-

mum margin hyperplane in the feature space, one actually need not to calculate

the transformed vectors φ(xi), φ(xj) explicitly, since it is present only as a dot

product in the training algorithm.

It would be very wasteful to spend a precious computational time to perform these

complex transformations only to aggregate them immediately in a dot product,

one single number.

It appears that for our needs it is sufficient to use a so called kernel function

which is defined as a dot product of the two transformed vectors and which may

be calculated very inexpensively. [44]

Definition 2.6. Given an appropriate mapping φ : Rn → Rm with m ≥ n, the

functions of the form

K(x, z) = φ(x) · φ(z) (2.31)

where x, z ∈ Rn are called kernel functions or just kernels. [28, p. 107]

The process of mapping the data from the original input space to the feature space

is called kernel trick. [28, p. 103] The kernel trick is rather universal approach,

its application is not solely limited to the support vector machines. In general,

any classifier that depends merely on the dot products of the input data may

capitalize on this technique.

Let us rephrase the support vector machines using the kernel functions. The
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Figure 4: An example of the data set, that is not linearly separable in the original space

R2 (Top). The very same data set can be however separated linearly in the transformed

space obtained by the transformation: [x1, x2] = [x1, x2, x
2
1 + x22] (Bottom). Credits:

Eric Kim, 2013 [39].
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training algorithm (2.28) can be now expressed as

α∗ = argmax
α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjK(xi,xj)

s.t.

m∑
i=1

αiyi = 0

αi ≥ 0, i = 1, . . . , l

(2.32)

while the decision surface (2.30) in terms of kernel function is defined as

f̂(x) = sgn

(
m∑
i=1

α∗i yiK(xi,x)− b∗
)

(2.33)

2.3.1 Linear kernel

There are several well known kernel functions that are commonly used in connec-

tion with support vector machines.

The first, rather trivial, example is a linear kernel. It is defined simply as

K(x, z) = φ(x) · φ(z) = x · z (2.34)

In this case, the feature space and the input space are same and we get back

to the solution derived in the previous Section 2.2.3, where we discussed linear

support vector machines.

I mention the linear kernel here just to emphasize the fact, that the substitution

with the kernel function does not change the original algorithm entirely. It merely

generalizes it.

2.3.2 Polynomial kernel

The polynomial kernels are another example of frequently used kernel functions.

When Vapnik and Cortes in their essential paper [12] achieved a great shift in

the optical character recognition of handwritten numbers, it was the polynomial

kernel that showed its strength for this particular task.

The homogeneous polynomial kernel of degree d (d ≥ 2) is defined as

K(x, z) = (x · z)d (2.35)
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The more general non-homogeneous polynomial kernel (d ≥ 2, c > 0) is

K(x, z) = (x · z + c)d (2.36)

Note, that the latter maps the original input space to the feature space of the

dimensionality
(
n+d
d

)
, where d is the degree of the kernel and n is the dimension

of the original input space. However, despite working in this O(nd)-dimensional

space, computation of K(x, z) consumes only O(n) time. [44]

2.3.3 Gaussian kernel (Radial basis function)

The gaussian kernel is probably the mostly used kernel function and is defined

as

K(x, z) = exp

{
−‖x− z‖

2

2σ2

}
(2.37)

It maps the input space to the infinitely dimensional feature space. Thanks to

this property, it is very flexible and is able to fit a tremendous variety of shapes

of the decision border. The gaussian kernel is also often referred as radial basis

function (RBF). In some instances is parametrized in a slightly different manner:

K(x, z) = exp
{
−γ‖x− z‖2

}
(2.38)

2.3.4 Other kernels

There are many other well researched kernel functions. An extensive, although

probably not exhaustive, list of other commonly used kernel functions is available

in [17]. Most of them are, however, used only for research purposes or under the

special circumstances and have no use in the credit scoring models.

For any function K to be a valid kernel, a necessary and sufficient condition has

been derived. This condition is usually referred as Mercer’s theorem, which is

formulated in a slightly simplified form below [44].

Definition 2.7. Let a finite set ofm points be given {x1, . . . , xm} and let a square

m-by-m matrix K be defined so that (i, j) entry is given by Kij = K(xi, xj). Then

such a matrix is called Kernel matrix.
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Theorem 2.1 (Mercer’s theorem). Let K : Rn×Rn → R be given. Then for K to

be a valid kernel, it is necessary and sufficient that for any {x1, . . . xm} ,m <∞,

the corresponding kernel matrix is symmetric positive semi-definite.

There are no general rules concerning the selection of a suitable kernel. It highly

depends on the character of the task being solved, the data set and the relation-

ships among the variables play a major role, too. In case of simple jobs with plain

linear relationships, the linear kernel may be sufficient and other kernels will not

bring any improvement.

In other applications, where the data are complex and interdependent, more

advanced kernels may bring a major leap in the classification performance. This

may be the case in the aforementioned optical character recognition (OCR), face

recognition, natural language processing or genetics.

The credit scoring lies kind of in the middle of these extremes. Some papers

suggest, that the consumer credit scoring data tend to be linear or just mildly

non-linear. Therefore, the linear support vector machines predominate in the lit-

erature, often accompanied with the Gaussian kernel to seek for the non-linearities

in the data (see [42] for comprehensive list of papers). The polynomial kernels

are rarely represented in the credit scoring literature (see [5], [56] for examples)

as they seem to give the mixed results.

2.4 Soft margin classifiers

Until now we have assumed that our training data are linearly separable - either

directly in the input space or in the feature space. In other words we have

supposed only perfect data sets. In reality the data sets are often far from perfect.

The real data are noisy, contain misclassified observations, random errors etc.

We need to generalize the algorithm to be able to deal with the non-separable

data. Surprisingly enough, the basic idea of the generalization is very simple.

We just need to allow some observations to end up on the ”wrong” side of the

separating hyperplane.

The required property is accomplished by introducing a slack variable ξ and

rephrasing the original constraint (2.9)

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , l (2.39)
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where ξi ≥ 0. This way we allow the functional margin of some observations to

be less than 1.

The slack variable works like a corrective equation term here. For the observations

located on the correct side of the hyperplane, the respective ξi = 0 and the (2.39)

is then same as (2.9). For noisy or misclassified observations appearing on the

wrong side of the hyperplane, the respective ξi > 0, as shown in Figure 5.

Figure 5: The purpose of the slack variable explained through the simple sketch. The

respective slack variable ξi is zero if the observation is located on the correct side of the

hyperplane and nothing is changed. The ξi is greater than zero if its distance from the

separating hyperplane is lower than the distance of support vectors. Credits: Stephen

Cronin, 2010, slightly modified. [15].

It is necessary that with each misclassification we pay some price, since in general

we want to maximize the margin while simultaneously minimize the adverse effect

of the wrong observations. Otherwise the trivial solutions where all data are

marked as wrong would always prevail. This is why we have to expand the

original objective function by the penalty term

min
w,ξ,b

(
1

2
w ·w + C

m∑
i=1

ξi

)
(2.40)

where C > 0 is the cost parameter, which determines the importance of wrong

observations. Small values of C lead to more benevolent solutions while the larger

values of C would lead to solutions similar to the hard margin classifier from the

previous sections.
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This time due to the limited space I will not go again through the whole process

of deriving the dual of this problem (for the step by step solution see [28, p. 118-

121]). It turns out, that the dual of the soft margin classifier simplifies to a very

convenient form:

max
α

(
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjK(xi,xj)

)

s.t.
m∑
i=1

αiyi = 0

C ≥ αi ≥ 0, i = 1, . . . , l

(2.41)

Note that the newly inserted cost term does not appear in the objective function

and poses only a restriction for the values of the individual α coefficients.

Thanks to this property and combined with the kernel trick, the soft margin

support vector machines are very easily implemented and solved efficiently on

the computers without requiring a tremendous computational power.

The results, again, will be the decision function (2.30). This function produces

results on the simple yes/no scale. In credit scoring we often need more than that:

we need to quantify the quality of the debtor as a real-valued number which is

then called score in this context. This may come handy in tasks like calculating

the area under curve or finding the optimal cut-off value, which both will be

discussed later in the text.

For this purpose, the functional margin of the observation can be used. Thus,

the score s of the observation x will be simply defined as

s(x) =
m∑
i=1

α∗i yixi · x− b∗ (2.42)

where α∗, b∗ are the parameters of the optimal hyperplane calculated by the

support vector machines, xi, yi are the individual observations from the training

set and m is the number of observations in the training data set.

28



2.5 Algorithm implementation

The simplest approach to solve a convex optimization problem numerically on

computers is the gradient ascent, sometimes known as the steepest ascent algo-

rithm. The method starts at some arbitrary initial vector (e.g. rough estimate of

the possible solution) and proceeds iteratively, updating the vector in each step in

the direction of the gradient of the objective function at the point of the current

solution estimate. [14, p. 129]

But using the gradient methods to solve (2.41) brings problems which are hard

to be circumvented. The main trouble is caused by the fact, that the constraint∑m
i=1 αiyi = 0 must hold on every iteration. From this constraint it follows, that

the elements of vector of solutions, α are interconnected and cannot be updated

independently. It also implies, that the smallest number of multipliers that can

be optimised at each step is 2. [14, p. 137]

This key fact is used by the algorithm Sequential Minimal Optimisation (SMO)

which, in the course of time, was established as the optimal way to solve the

problem (2.41). At each iteration, the SMO algorithm chooses exactly 2 elements

of the optimised vector, αi and αj, finds the optimal values for those elements

given that all others are fixed and updates the vector α accordingly. [14, p. 137]

In each step, the vector αi and αj are chosen by the heuristics described in [50] by

Platt, who first introduced the SMO algorithm; the optimisation itself is however

solved analytically in every iteration. The introduction of SMO removed the main

barrier for support vector machines to be widely adopted by the researchers, as it

sped up the training process at least 30 times against the methods used before. [19]

Since then, the SMO efficiency was further improved and it quickly became a

standard for the support vector machines training.

Because of the fact, that the actual process of implementation of the training

algorithm is rather tedious, prone to errors and represents more just a technicality

rather than actual research value, the standardized packages and libraries to

support the SVM training and evaluation were created.
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Among them, LIBSVM [9] is the most prominent one, with the longest history,

continuous updates, associated research paper and data sets and widest support

for different development environments (IDEs). Other libraries, like SVMlight15,

mySVM16 or the specialised toolbox for R17, Torch18 or Weka19 do exist.

Matlab, which was used for the practical part of my thesis, has its own support for

SVM. However, its performance and the possibilities it offers are not astonishing.

For that reason, I decided to use the LIBSVM library as an extension for the

standard Matlab functions.

15http://svmlight.joachims.org/

16http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html

17SVM in R, http://cran.r-project.org/src/contrib/Descriptions/e1071.html

18SVMTorch, http://www.idiap.ch/learning/SVMTorch.html

19http://www.cs.waikato.ac.nz/ml/weka/
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3. Model building

In this chapter, some practical issues that need to be addressed when one builds

a credit scoring model (or any other classification model) are discussed. While

some of these issues are rather general and not solely limited to the support

vector machines, the text was adjusted to the fact, that SVM will be my primary

training algorithm in the practical part of this thesis.

3.1 Data preprocessing

3.1.1 Categorical variables

Support vector machines assume that each input observation is represented as a

vector of real numbers. In some instances, and this is true especially for the credit

risk applications, many features are not real numbers. They are either ordinal

or categorical variables (e.g. education, gender, home ownership, . . . ). Hence for

the use of SVM algorithm, these variables need to be transformed into numerical

ones.

One common approach is to express r-category variable as a zeros-one vector

of length r. Thus for example gender male, female can be represented as (1,0)

and (0,1), respectively. The increased number of attributes should not negatively

affect the performance of the SVM. [35]

In fact, there is one dimension redundant in this approach. Merely (r − 1)-

dimensional vector of zeros and ones is sufficient to encode categorical variables

with r values. This is not an issue with SVM as the learning algorithm is able

to ignore the excess dimension with no negative effect on the resulting model

and it may be the reason, why most of the SVM literature recommends the

aforementioned technique.

The extra dimension does, however, cripple the Logistic regression usability when

full model with constant is sought. In such cases, the coefficient matrix is linearly

dependent and the problem with multicollinearity arises, thus making the coef-

ficient search task unsolvable. For these reasons, I use only (r − 1)-dimensional

encoding for each categorical variable, so that it is solvable by SVM as well as

Logistic regression algorithms.
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The conversion of the categorical variables to the real-valued numerical variables

poses another approach to solve this problem. One commonly used technique

takes advantage of calculation the Weight of Evidence (WoE). For each value of

one categorical variable c, the WoE is defined as [59, p. 56]:

WoE(c) = ln P (c | nondefault)− ln P (c | default) (3.1)

Unlike previous technique, which leads to the increase of the data set dimensional-

ity, replacing the categorical variables with WoE keeps the number of dimensions

intact. Therefore, it is advantageous particularly in cases, when the dimension-

ality of the problem poses a potential problem (e.g. due to high computational

costs or algorithm weaknesses). While this is not in theory a case of the SVM

algorithm, it can still be beneficial to work only with real-valued numerical inputs.

3.1.2 Scaling and standardizing

Another very important preprocessing step is the data scaling. It prevents the

attributes in greater numeric ranges to dominate those in smaller ranges. It has

also positive effect on the convergence of SMO algorithm that is most common

computer implementation of Support Vector Machines at the moment. [35]

Most often, the numerical variables are scaled linearly to the range [-1,+1] or [0,1].

Another approach is standardizing, i.e. subtracting the mean and dividing by the

standard deviation. A very detailed description on scaling and standardizing can

be found in [53]. It is important to use the same scaling factors on the training

as well as on the testing set. [35]

3.1.3 Grid search

Depending on the chosen kernel, there are always some free parameters to be set

or chosen. In the case of the most used non-linear kernel, the radial basis function

(2.38), there are two parameters: C (the soft-margin cost parameter) and γ (the

shape parameter). The optimal (C, γ) is not known and therefore there must

be some parameters search procedure during the model selection. In the course

of the time, a procedure called ”grid search” became established as a standard

approach to this task.
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The guide from the authors of the LIBSVM library [35] recommends using expo-

nentially growing sequence of parameters (C = 2−5, 2−3, . . . , 215; γ = 2−15, 2−13,

. . . , 23) in combination with the k-fold cross validation to find the optimal pair of

the parameters. For bigger data sets, rough scale may be used for finding the best

performing area of parameters on the grid at first. Then the finer grid resolution

is applied to the best performing region. After finding the optimal (C, γ), the

model should be retrained using the whole data set.

Figure 6: The example of the two-step grid search process is shown on this contour

graph. Darker contours in red represent higher performance of the support vector ma-

chine on the testing data set. First, the region with highest performance is identified

on the rough grid scale. Then the finer resolution is used to find the optimal parameter

values. In this example, C = 211.8, γ = 210.3 would be used to train the best performing

SVM model.
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3.1.4 Missing values

Another problem that arises with the real world data sets are the missing values.

This can be caused either by the fact, that some data were not collected from

the beginning and started to be recorded at some later point. Or there might be

some information that just could not be obtained from the applicant.

If such cases occur only rarely, we can just ignore those few incomplete points

with a clear conscience. Naturally, a different approach must be taken if the

missing values concern a big part of the total observations in the data set, as in

such case it is not possible to simply disregard them.

For categorical variables, it is common among practitioners, that a new category

”N/A” or ”missing” is created. The other way how to deal with this problem is

replacing the missing values with the mode value in its category. Missing values

in numerical variables on the other hand can be replaced by the mean or median

value.

While this technique may seem quite arbitrary on the first sight, it actually makes

sense from the pragmatic point of view. Most of the learning algorithms cannot

handle the data sets containing the missing values. If we still need to use such

observations, it is best to assume, that the missing parts attain the most probable

values. The real-world interpretation of this technique would be: if you do not

know some information about the applicant, assume the most common value.

3.2 Feature selection

Many data sets contain a high number (hundreds, thousands or even much more

in some study areas) of input features albeit only couple of them can be relevant

to the examined classification problem. Credit scoring is not a typical example

of high-dimensional problems, because there are rarely data sets containing more

than like 100 input features in total.

Regardless, decreasing the dimensionality of the task can be beneficial both

thanks to lower computational costs as well as increasing the performance of

the resulting model. The irrelevant input features can actually bring additional

noise into the model.
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This is why some feature filtering or selection is often performed before the actual

model training can begin. There are several established methods for this task,

most of them are used in general and not limited only to the support vector

machines context.

It should be noted, that feature selection techniques must be based on some kind

of heuristic algorithms, since selecting the optimal set of the input features is not

as simple job as it might seem at first sight. Suppose we have a data set with

n input features. Each of them can be found in one of the two possible states:

included or not included in the final model. Thus there are 2n possibilities to

choose from.

The feature selection techniques are often combined with the model selection

techniques. Each variant is then evaluated using the out-of-sample data set,

which prevents to choose such features that perform well on the training subset

(e.g. just by chance), but are not actually relevant to the classification task.

3.2.1 Forward selection

Forward selection is a sequential iterative procedure to select appropriate set of

relevant input features. We start with an empty set of included features, i.e. all

n features are in the not included state at the beginning. Now we iterate over

these features and use exactly one at a time, thus creating n different models in

the first step.

All these models are evaluated using the model selection procedure and the input

feature performing best on the testing subset is chosen and included in the model.

In the next step, the remaining n− 1 features produce a new set of n− 1 models,

each of them incorporating two input features - the one that was selected in the

first step combined with one from the remaining features. Yet again the models’

performance is evaluated and the best performing feature is added to the set of

included features.
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This process goes on as long as it is necessary. In the support vector machines,

there is no clear way how to decide, when the forward selection algorithm should

stop. A researcher can for example set the reasonable amount of input features a

priori. Or the stopping condition can be formulated as the minimum performance

improvement required for each step. If in any given step the performance differ-

ence between the previous model and the new one is lower then some a priori set

value, the Forward selection algorithm stops. The threshold value can either be

zero (meaning to stop as soon as the newly added features start decreasing the

performance of the model) or any other positive number.

3.2.2 Backward selection

The backward selection algorithm is a slight modification of the previous one.

The main difference is that all of the input features are included in the model at

the beginning. Then at each step, one worst performing feature is taken away in

the same iterative manner. The stopping condition can be again some a priori

chosen number of included input features or some performance threshold, as in

the previous case.

Despite the fact, that forward and backward selection are essentially same, there

are no guarantees that they end up with the same sets of the included input

features.

3.2.3 F-score

A rather more quantitative and theoretically better justified approach to the

feature selection is using of the F-score. Application of this method for the

support vector machines was proposed by the LIBSVM authors in [10] and is

used in many subsequent research papers on support vector machines in the

credit scoring accordingly.

Given the training vectors xk, k = 1, . . . ,m, the number of positive and negative

classes m+ and m−, respectively, and the averages of the i-th feature x̄i, x̄
+
i , x̄−i ,

respectively, then the F-score of the i-th input feature is defined by the following

equation [10]:
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i

)2 (3.2)

The higher the F-score the higher is the discriminative power of the respective

attribute. The F-score is therefore a quite easily computable metric for judging

the importance of each input feature although it has some drawbacks, too. The

major disadvantage is that the F-score does not assess the relationships among

the input features itself.

After the F-score is computed for all the input features some threshold has to be

determined. Features with the F-score above this threshold will then be included

in the model. The selection of the appropriate threshold can be done by iterat-

ing over some reasonable range of possible threshold values and minimizing the

validation error of the corresponding models. [10]

3.2.4 Genetic algorithm

Genetic algorithms (GA) are biologically inspired optimization methods. They

are very powerful in the optimization situations, where unattainable number of

possibilities exist and the landscape of the problem is too complicated to use

analytical solution.

Genetic algorithms mimic the process of the natural selection. The optimization

problem must be translated in a suitable expression that plays the role of the

DNA throughout the optimization - usually the binary encoding of the solution

is used.

After that, some random set (i.e. population) from the set of all possible solutions

is generated and evaluated. Subsequently, the best performing solutions are used

to generate a new population through the combination of inheritance and several

genetic operators: mutation and crossover. The process is repeated until some

convergence criterion is met.

Although the genetic algorithms are not guaranteed to find a global extreme in all

cases, it turns out that in many applications they are capable to find good enough

solution in a satisfactory low number of steps. Concerned reader is referred to

the relevant literature [26] for more information on this truly interesting topic.
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In the association with the support vector machines, genetic algorithms are some-

times used for the feature selection. The problem is binary encoded in the chain

of 0-1 numbers of length n (the number of all features in the data set), whereas

0 representing the features that are not included and 1 representing the included

features. E.g. for m = 3, the chain 010 represents a solution, where only 2nd fea-

ture is included in the model, while 111 represents the model, where all features

are considered relevant for the model.

A set of random chains is generated and the respective models are evaluated

according to the model selection techniques. After the evolution is simulated in

the sufficient number of steps, the chains representing near-optimal selection of

input features will prevail in the entire population. Either the best performing

model is directly chosen or the performance in combination with the number of

features is taken into the consideration.

The experiments on the credit data sets show, that the genetic algorithms are

effective for the feature selection, since they end up with as little as half of relevant

features when compared to other techniques without sacrificing the performance

of the models [36]. But the magic always comes with a price. In this case, the

extreme requirements for the computer power represent such a cost.

3.3 Model selection

In practice, we have usually many model candidates to choose from and it may

not be clear which one to use optimally for a given task. In the context of the

support vector machines, the proper kernel function must be picked and then its

optimal parameters found. Although most researchers use either linear or radial

basis kernels for the credit scoring application, we need some general approach

how to determine the optimal model from the class of all possibilities.

In principle, there are 3 basic methods that differ in the precision and the required

computing resources.
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3.3.1 Hold-out cross validation

The idea of this approach is rather simple: split the data set S randomly into

two subsets Strain and Stest, use only Strain subset for training each model, and

measure its performance on the Stest subset. The model that performs best on

Stest is chosen as the optimal. Optionally, the selected model can be then retrained

using the whole dataset S in the end.

The advantage of the approach is low computational cost, while the disadvantage

is that only the part of the dataset is used in the model selection process. This

may be issue in cases, when the data is scarce or its acquisition was costly [46].

The split ratios 70:30 or 50:50 are most commonly used in the literature.

3.3.2 k-fold cross validation

During this process, dataset S is randomly split into k subsets S1, . . . , Sk. One

of these subsets is left as a testing one and the rest k − 1 are used to train the

model. This process repeats k times, so that each subset is left out as a testing

one. Thus we obtain k performance measures in the end. These measures are

averaged for each model and the model with the best performance is chosen.

The advantage of the k-fold cross validation is more efficient use of the dataset, the

disadvantage are higher computational costs since each model has to be trained

k times instead just once as in previous case. Usually, k = 10 or k = 5 are used

in the literature as the default values. [46]

3.3.3 Leave-one-out cross validation

This is the special case of the previous approach when k = m, i.e. each sub-

set contains one observation. The computational costs are extreme so that the

method can be used only on small datasets.
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3.4 Model evaluation

When a best model is to be chosen from the set of several alternatives, a criterion

to evaluate each model’s performance needs to be established. The simplified

confusion matrix of the classification problem is given by Table 1.

PREDICTED

-1 +1

A
C

T
U

A
L -1

True Negative

(TN)

False Positive

(FP)

+1
False Negative

(FN)

True Positive

(TP)

Table 1: The confusion matrix of the classification model. Each cell of the matrix

contains a number of observations suiting the conditions in the respective heading. [42]

Simple criteria can be derived from this confusion matrix:

• Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)

• Classification error = (FP + FN)/(TP + TN + FP + FN)

• Sensitivity = TP/(TP + FN), also called true positive rate, hit rate or

recall

• Specificity = TN/(FP + TN), also called true negative rate

The support vectors machine algorithm leads to the separating hyperplane (w, b)

which geometrically is, by default, positioned exactly in the middle between the

support vectors of the +1 and −1 classes. Such treatment implicitly assumes

that the negative consequences coming from the wrongly classified +1 class are

of same seriousness as from the wrongly classified −1 class. This may not be

always the case.20

20As an extreme example, consider the classification in medicine, where False positive test

leads to emotional distress and the need for repeating the test while False negative can lead to

the patient’s death.
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From his previous experience, the lender may know, that giving the loan to a bad

creditor (falsely classified as a good one) is worse than missing the opportunity

to fund a good creditor (falsely classified as a bad one). Such an information

should be included in the model. To achieve this, we must shift the separating

hyperplane closer to one or another class. Mathematically speaking, it means

tweaking the parameter b or, equivalently, changing the decision function so that

the threshold score (2.42) for classification will be different from the default value

0.

In the logistic regression, this means to find a threshold τ other then the default

value and then to classify an observation as +1 class when P (Y = +1|x) > τ

and −1 otherwise.

The disadvantage of the metrics derived from the Table 1 rests in the fact that

they represent a static picture, which is valid only for one choice of the threshold

value.

A more sophisticated approach is represented by the Receiver Operating Char-

acteristic (ROC) curve, which is a plot of the Sensitivity on the y-axis against

(1− Specificity) on the x-axis across all possible thresholds. [42]

An aggregated single number, the area under the receiver operating characteristics

curve (simply called as Area Under Curve or AUC), can be then calculated.

AUC then serves as a metric for evaluating the model performance. The value

of AUC = 0.5 corresponds to the random classification, while 1.0 indicates a

perfect classification. An AUC is well-established in credit scoring and is explicitly

mentioned in the Basel II accord. [42]

Formal statistical test has been developed by DeLong & DeLong to compare

two or more areas under correlated ROC curves [18]. It can be used to test the

hypothesis that the AUC of two different models (as measured on the same data

set) is same. The method was later reformulated to the more accessible form in

[21, p. 11] and applied specifically to the credit scoring problems.
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4. Support vector machines in

Credit risk

This chapter describes the current literature on the support vector machines in

credit scoring with a special focus on the comparison of the SVM performance

with other classifiers, especially with the logistic regression.

Over time, couple of standardized data sets have been used for the purpose of

comparability of different models’ performance in the space and time. Notable

examples include German data set [31] and Australian data set [3]. I will refer to

them in the following lines.

The original idea to separate the linearly separable observations with a hyperplane

and to choose such a hyperplane that maximizes the minimal distance from the

observation dates back to 1962 [60]. The concept remained unnoticed by most

researchers until the pivotal work of Vapnik and Cortes [12] wasn’t published in

1995. This paper formulated support vector machines (then referred as support

vector networks) in the current form (soft margin, kernel function) and showed

the superiority of SVM over the state-of-the art classification algorithms of that

time on the example of the handwritten numbers recognition.

This work had a boosting impact on the subsequent advance of interest in SVMs

towards the close of the 20th and on the beginning of the 21st century. Its effect

could be compared with consequences of the pioneering paper [52] about the back-

propagation algorithm that started the late 80s interest in the neural networks,

which were neglected and underestimated till then.

Over time, papers examining the performance of the SVMs in the credit scoring

and other financial applications started to appear, especially after 2000.

Baesens in 2003 [4] applied SVMs and other classifiers to several credit data sets.

He concludes that SVMs perform well when compared with other algorithms; they

do not however always result in the best performing model. He also notes the

specifics for the credit data which are typically hardly separable by any decision

surface. It’s given by the fact that the data cannot capture the complexities of

an individual’s life. It is quite common, that the misclassification on credit data

reach around 20 % or 30 %.
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Li in 2004 [43] studied the SVM performance on 1 000 credit records of a Chinese

commercial bank. He concludes, that SVM performs noticeably better (by more

than 50 %) in the terms of hit rate against the credit scoring methodology the

bank used at the time. However, he did not in any way specify, which method-

ology did the bank use then and this mere fact degrades the significance of the

whole paper.

Schebesch and Stecking (2005) [54] apply SVM to a database of applicants for

building and loan credit. They conclude that SVMs perform slightly better than

LR, but not significantly so.

In Huang et al (2007) [36] the SVM performance on German and Australian

credit data set is compared against other data mining methods (back-propagation

neural network, genetic programming and decision trees). For the support vector

machines, various feature selection techniques are tested: unrestricted model,

features selection by F-score and features selection by GA-approach. The GA

approach used significantly lower number of features than the other methods,

with a slightly higher hit rate. The authors conclude that SVM is competitive

method for the credit scoring when compared against other commonly used data

mining algorithms but is not significantly more accurate than other methods.

Bellotti et al (2009) [5] used the data set consisting the records of 25 000 credit

card users and compared the performance of SVM with LR, LDA and kNN. They

found that the non-linear kernels in SVM do not perform better than the simple

linear SVM. Especially the polynomial kernel performed poorly and authors at-

tribute this fact to the possible over-fitting. The method for selecting significant

features in the data using the square of weights on features output proposed by

Guyon et al (2002) [27] was used and enhanced. The paper concluded that LR

and SVM tend to select same features as the most important ones. Generally, the

SVM performed slightly better than the logistic regression, according to Bellotti.

Ghodselahi (2011) [25] utilized 10 SVM classifiers as the members on an ensem-

ble models and conclude that its performance is significantly better than of any

individual SVM model or logistic regression. The training was performed on

the standardized German data set. However the reported AUC for the logis-

tic regression is worse than the AUC reported by others on the very same data

set (e.g. [42]) which casts a shadow of doubts on the conclusions of this paper.

Chances are, that the conclusion stands on the simple fact, that authors were not

able to fully utilize the strengths of the LR approach. This paper is nevertheless

a representative of a research trend of the recent years when ensemble models are

preferred to the individual ones.
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There is usually high imbalance in credit data sets, as the bad cases occur signif-

icantly less often than the good ones. Brown (2012) in [7] examined the effect of

the data imbalance on several data mining algorithms. Support vector machines

tended to perform poorly, when the percentage of bad cases in the training data

set decreased and the data imbalance increased.

The solution of the data imbalance is not as simple as it may appear. Simple

undersampling21 does not necessarily solve the problem. On the contrary, it may

lead to the solutions that are further from the ideal solution, as [1] shows and

proves. This paper suggests oversampling instead: the technique to generate new

artificial bad cases from the actual ones, so that their total number matches the

number of good cases. Authors achieved positive results with their method on 10

different data sets22. Despite this fact, I find the proposed idea kind of “spooky”

and not suitable for the credit scoring.

The problem of the unbalanced data in combination with Support vector machines

remains unresolved.

Recently, there were some doubts regarding the AUC as an indicator for com-

paring different classifiers performance due to its fundamental incoherence [30].

Several alternative measures have been proposed in the literature, one of them be-

ing H-measure as per [29]. However, according to the extensive empirical classifier

comparison in [42] there is a high correlation between the AUC and H-measure.

In other words, both measures give same conclusions in the vast majority of cases.

Authors conclude that using AUC to evaluate credit scoring performance remains

“safe” from the empirical point of view.

Probably the most in-depth analysis of the current state-of-the-art machine learn-

ing algorithms was performed by Baesens et al (2013) [42], exactly 10 years after

their first comparative paper [4] was published.

21randomly take away good cases from the training data set, so that the final ratio of good

and bad cases will be 50:50

22none of them is credit scoring, however
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Authors compared the performance of different algorithms with many different

settings (1141 models in total) on 7 real-life credit data sets (German and Aus-

tralian were also among them) using 4 different performance measures to evaluate

the models (percentage correctly classified, AUC, H-measure and Brier Score).

The models from 3 wide families were examined: individual classifiers (most-

ly linear classifiers), homogeneous ensemble and heterogeneous ensemble classi-

fiers. [42]

The results are not favourable to the SVM. The performance of the SVM models

with linear kernel was moderate when compared with other individual classifiers.

The Gaussian kernel performed slightly better. Logistic regression noticeably

outperformed all other linear classifiers and ended up as second best individual

algorithm, beaten only by the artificial neural networks by a small margin. It

turns out that SVM can perform really great on some datasets, but the overall

results on different data sets are average at best, according to their paper. [42]

Authors remark that the overall performance of the “individual classifiers” did

not significantly improve over the last decade. In their opinion it implies that

the possible limits were reached with this approach. Ensemble classifiers (ho-

mogeneous as well as heterogeneous) performed markedly better on the 99 %

significance level: Random forests (RF) as being the best of homogeneous and

HCES-Bag the best of heterogeneous ensembles (and the best overall). [42]

Authors propose to use Random forests as the benchmark for the future research

on new classification algorithms in credit scoring. Despite it ended up as second

best, it is (unlike HCES-Bag) easily available and implemented in many standard

data mining software. [42]

The authors argue against the current common practice of using logistic regression

as the only classifier for the purpose of comparing a newly proposed classifiers,

since beating the logistic regression is no longer a challenge. While outperform-

ing random forests can be considered as a signal for a methodological advance-

ment. [42]

The most recent progress in the machine learning in general were reached using

Deep learning, a set of algorithms enhanced and derived from the neural networks,

though with a significantly more complex architecture.
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The pioneers of this approach accomplished some noticeably achievements in

the computer vision, beating other existing algorithms by a large margin and

achieving a human-competitive performance on major benchmarks.23 [11]

Although the idea is not new, it did not gain an attention of the researchers

until recently with new applications being developed and explored, like speech

recognition, natural language processing, facial recognition and others. When a

new breakthrough machine learning algorithm is developed, its performance is

usually tested on tasks like these, at first.

Credit scoring is not usually attractive enough among the engineers and tech-

nically oriented researchers who are the originators of such new advancements.

Consequently, the research of their applications on credit scoring frequently comes

with a delay of several years behind the latest trends. Up to now I was not able

to find any relevant paper on Deep learning for credit scoring and I believe this

might present an interesting topic for further research.

23See Deep Learning Wins 2012 Brain Image Segmentation Contest at http://www.idsia.

ch/~juergen/deeplearningwinsbraincontest.html
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5. Application

This part of my work dwells on the application of the support vector machines

for building the predictive model using the real world credit data set. I used my

own code written in the MATLAB environment with the help of the LIBSVM li-

brary [9] that became a standard routines package for the support vector machines

during the years thanks to its availability, multi-platform support and continuing

optimization. While MATLAB itself contains a built-in support for SVMs, it is

not comparably efficient in the sense of the computational time needed.

The data set I used for the research purposes was obtained from the Estonian

peer-to-peer lending platform IsePankur.ee/Bondora.com24, that are accessible

online thanks to the transparency policy promoted by the platform. [37]

5.1 Peer to Peer Lending

Financial sector, despite being one of the most regulated and supervised econom-

ic sectors [32], has recently experienced several important and possibly game-

changing disruptive innovations like crowdfunding or peer-to-peer lending, among

others.

Since peer to peer lending is such a new phenomenon and there are very few peer-

reviewed papers studying it from the perspective of the credit scoring, it might

be useful to describe its basic principles and examine the common and distinct

characteristics of the P2P lending and the traditional banking lending.

24In the course of writing this thesis, IsePankur rebranded and renamed to Bondora.com due

to the ongoing expansion to other European markets; the original name was not very catchy

and easy to pronounce for non-Estonians and this was probably the main reason for rebranding.
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I chose Bondora as my data source among other possibilities25 because it’s one

of the few platforms that allows foreign investors to participate26 and because I

have the personal experience with this platform for more than 15 months at the

moment.

While the principles of P2P lending are same, the details of implementation can

vary from platform to platform (from country to country). Since these details

can influence the credit data collection and the usability of the data set, I will

primarily focus on the description of the Bondora specifics and details.

Peer to peer lending (P2P Lending, sometimes also Social Lending) denotes the

practice of matching the individual lenders and borrowers for the unsecured con-

sumer loans [24]. This is accomplished with the means of electronic, automatic

or semi-automatic, brokers’ systems without traditional intermediaries and thus

can be regarded as one of the symptoms of the ongoing disintermediation [6].27

There are 3 main factors that account for the growing popularity of the P2P

lending: low barriers, automation and liquidity.

25Open access to the credit data is an industry standard in the peer to peer lending, apart

from Bondora some other big platforms like Lending Club, Prosper or Zopa could have been

used.

26The heavily regulated US platforms are restricted only to US citizens, moreover residents

only from some US states.

27Although there are reports, that there is a growing presence of the banks, specialized funds

and other ”professionals” among the investors on the greatest P2P lending markets and the

platform operators are reportedly trying to attract these types of investors to keep the liquidity

on their markets. Rather than disruptive competition, the P2P-banks relationship can turn out

to be a symbiotic one in the future.
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Low barriers: each loan application is divided into small financial amounts and

there are usually very low minimum investment requirements. At Bondora, it is

possible to invest with as little as e 5 in each loan. This implies there are usually

hundreds of people financing one loan. And on the other hand it is possible to

build a relatively well diversified portfolio of the consumer loans with an amount

that is affordable to many non-affluent investors. The operators are regulated by

the financial authorities28 and can be therefore considered as an alternative for

the individual yield-seeking investors.29

Automation: The proper diversification of one’s investment portfolio can be

time-consuming. This is the reason, why all the platforms adopt some form of

automation of the investment process. Each platform has some kind of its own in-

ternal scoring system, that might not be perfect in the sense of the discrimination

power, but its performance is good enough to allow for creating the automatic or

semi-automatic investment plans.

An investor sets the level of the maximum riskiness and the minimum interest

rate required, optionally sets some other limits30 and these plans then invest

small amounts of his total account to each individual loan that meets the crite-

ria. At Bondora, the internal rating consists of an information about disposable

income (borrowers are sorted into three categories: A,B,C) and payment history

(6 groups: 1000, 900, 800, 700, 600, 500, the higher the better).

The resulting interest rate of the loan is either determined on the auction principle

or fixed by the loan applicant or the platform operator. Bondora allowed both of

these models in the past.31

28Bondora is supervised by the Estonian central bank, ZOPA by the Financial Conduct

Authority and the Lending Club and Prosper come under the authority of U.S. Securities and

Exchange Commission - to name the 4 largest marketplaces at the moment.

29Indeed, in United States it is possible to include these investments to one’s IRA account

under 401k, make the P2P lending part of the retirement investments and realize the tax

advantages on the top of that [41].

30For example minimum/maximum age, education, DTI ratio and other parameters

31Recent changes in the system abandoned the auction principle leaving only the fixed-rate

loans; my data set nevertheless comes from the time when both these models were available.
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In the auction, borrower sets the amount requested and the maximum interest

rate he is willing to accept. In the predefined time period, investors then bid the

amount and minimum interest rate required. When the time is up and the total

amount of bids is at least equal to the amount requested, the loan is assigned to

the borrower. The interest rate is determined by the Reverse Auction principle:

only the lowest bidding investors are granted the right to finance the loan and

interest rate is set as the highest rate that was sufficient to become a financing

investor (with respect to the amounts requested by the borrower and offered by

the investors).

In the fixed-rate setting, the applicant suggests the interest rate and investors

either bid on the loan with some amount of money or pass this opportunity and

wait for other loan applications. If enough money is offered by investors, the loan

is approved. If not, the borrower can repeat the process with higher interest rate.

From the investor’s point of view, there is a considerable level of automation in

the following steps, too. The instalments are automatically credited to investors’

account (proportionally to their amount invested in the loan) as soon as the

operator receives the money from the debtor. Automatic remainders are sent in

case the borrower is late with his payment.

Default is defined as missing part of the payments by more than 60 days. If default

occurs, the whole balance of loan turns into an immediately collectible claim and

the operator initiates the debt recovery process using the legal enforcement tools

available in the country of the debtor’s residency. The workout process is again

fully administered by the operator without any need for the cooperation from the

individual investors. The operator is motivated to perform well in this process

by two forces. First, he earns part of the recovered money. Second, thanks to the

data openness, the global default rates and recovery rates can be monitored on

the almost real-time basis. It is in his best interest to keep these numbers low so

as not to drive investors out of the market.
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Liquidity: With most of the P2P lending platforms, the loans are more or

less securitized and the secondary market is established to trade the cash flow

claims from the loans among the investors. Bondora allows to resell any non-

defaulted loan investment and the buyers have available all the resources to make

the informed decision - not only the information from the loan application but

also pre-existing course of the loan performance: payment plan, date and amount

of each payments, remainders sent, missed payments etc. The liquidity on the

secondary market is sufficiently high and the transaction costs represent 1.5 %

of the principal amount traded, which allows investor to liquidate their positions

quite comfortably, if needed.

Default risk aside, the main danger in the P2P lending represents the operator

risk. Indeed, there were already some bankruptcies in the past and this risk

should be borne in mind when considering investments in this new and still rather

experimental product. At Bondora, the loans are legally binding contracts signed

between lender and borrower (or between lenders in case of reselling).32 The

existence of the claims are not entirely dependent on the existence of the market

operator.33 The enforceability of a portfolio of a huge amount of tiny loans would

be, however, rather questionable.

5.2 Data description

The data set obtained from the Bondora Data Export [37] contains 6818 loans

provided between 28th February 2009 and 16th April 2014. Since my goal is to

build a model predicting the probability of default on a 1-year horizon, only the

loans provided between 28th February 2009 and 16th April 2013 were used, 2932

data points in total.

32Estonia is well known for its pioneering attitude to the eGovernment including the elec-

tronically concluded contracts and their effective enforcement at the courts.

33US platforms, on the other hand, take part in the truly securitization schemes where pass-

through notes are emitted for each loan. Investors do not (de iure) invest in the loans itself -

they buy (and sell) these notes. In all cases, the property of the investors is usually separated

from the operator’s assets.

51



Information available for each loan are quite thorough, include the personal as well

as behavioural information about the borrower and cover also the performance

of each loan and the recovery process in case the loan defaulted. The complete

list of the data set values are summarized in the Table 2.

All the numerical data were normalized using the z-score. All the categorical

variables were encoded using the technique of the dummy variables described in

Section 3.1.1. The missing values were replaced by the newly created ”N/A”

category in case of the categorical variables and by the mean value in case of the

numerical variables. No effort has been made to decrease the number of categories

in the categorical variables (e.g. to join several categories with similar probability

of default into one).

In the alternative approach, the categorical variables were replaced by the respec-

tive Weight of Evidence of each category as defined by equation (3.1). My goal

was to learn, if and how will the treating of the categorical variables affect the

performance of different models.

The binary class variable ”1-YR DEFAULT” was calculated, being 1 in cases

where the default occurred less than 365 after the loan origination date and 0 in

cases when the default occurred later or no default was observed at all. The loan

is considered to be in default, when borrower missed the scheduled payment by

more than 60 days.

Of the 2932 loans, 656 defaulted by the end of the first year (or 22.37 percent

of all loans granted). In total 2 096 352 EUR was lent; the total Exposure at

Default for the defaulted loans was 281 946 EUR (or 13.45 percent of the amount).

These numbers demonstrate a high risk-exposure in the P2P lending portfolios

even when compared with the credit cards delinquency rates. On the other hand,

the average recovery rates of the defaulted loans reach 60-70 percent and are

noticeably higher than in the credit cards loans portfolios. [8]
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ApplicationSignedHour n Hour of signing the loan application.

ApplicationSignedWeekday n Weekday of signing the loan application.

VerificationType c 3 Method of application data verification.

language code c 3 Language settings of the borrower.

Age n Age of the borrower (years).

Gender c 2 Gender of the borrower.

credit score c 6 Payment history (1000-500).

CreditGroup c 3 Disposable income (A,B,C).

TotalNumDebts n Total number of debts.

TotalMaxDebtMonths n The longest period when loans were in debt.

AppliedAmount n Amount applied.

Interest n Maximum interest acceptable for borrower.

LoanDuration n The loan term in months.

UseOfLoan c 9 Use of loan as declared by the borrower.

ApplicationType c 2 Auction or fixed-interest rate.

education id c 5 Education of the borrower.

marital status id c 5 Current marital status of the borrower.

nr of dependants n Number of children or other dependants.

employment status id c 5 Current employment status.

Employment Duration n Years with the current employer.

work experience n Work experience in total (years).

occupation area c 19 Occupation area, economic sectors.

home ownership c 10 Homeownership status.

income total n Total income.

DebtToIncome n Debt to income ratio (DTI).

NewLoanMonthlyPayment n New loan monthly payment.

AppliedAmountToIncome n Applied amount to income, %.

FreeCash n Discretionary income after monthly liabilities.

LiabilitiesToIncome n Liabilities to income, %.

NewPaymentToIncome n New payment to income, %.

NoOfPreviousApplications n Number of previous loan applications.

AmountOfPreviousApplications n Value of previous loan applications.

NoOfPreviousLoans n Number of previous loans approved.

AmountOfPreviousLoans n Value of previous loans

PreviousRepayments n Previous repayments

PreviousLateFeesPaid n Previous late charges paid

Table 2: List of the data set features. Second column: c = categorical, n = numerical

variable. Number of categories with non-zero observations are stated for the categorical

variables.
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5.3 Benchmark model: Logistic regression

Logistic regression as the industry standard for the credit scoring was used to

build a benchmark model for the purpose of the performance comparison with the

Support vector machines. The backward selection algorithm with the threshold

p-value = 0.05 was used to identify the statistically significant features in the

data set. The Chi-Square Wald statistics was used as a criterion, which allows

for evaluating the contribution of categorical variable as a whole. The following

analysis of variables significance is inspired by the approach taken in [5].

I performed 10 independent runs of the backward selection algorithm, each time

with the different random training and testing subsets. The resulting models

differed, sometimes quite significantly, in the number of variables selected as sta-

tistically significant. They were however very similar in terms of the performance

measured by the AUC.

Table 3 shows the results of the feature selection process for two different handling

of the categorical variables. We can clearly see, that there are 11 explanatory

variables that are consistently selected on every run while the significance of some

others seems to be unreliable and data-dependent. They may survive the elimi-

nation process on some of the random data subsets but drop out as insignificant

on the other ones.

Another remarkable conclusion is that the process of handling the categorical vari-

ables HAS an effect on the variable selection process. Although the results are

similar, they are not same - there are couple of variables in the woeised dataset,

that does not appear in the dummy variables dataset (like ApplicationSigned-

Hour). This may be caused by the fact, that MLE algorithm used in Matlab

for the logistic regression parameters estimate had some issues with the dummy

dataset. Sometimes, it was not able to reach results during a satisfactory number

of iterations. Woeised dataset did not exhibit such troubles and the parameters

estimation was fast and efficient.

On average, 15 explanatory variables stayed in the model after the feature selec-

tion process. There were minimum 13 and maximum 17 variables in the model

on the 0.05 significance level.

All the variables that occurred in the absolute majority of trials were then used

to build a final logistic regression model. The detail description, analysis and

maximum likelihood estimates are given in Appendix A.
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Dummy variables WOEisation

Variable # Rank Variable # Rank

credit score 10 1.00 credit score 10 1.00

Interest 10 2.00 Interest 10 2.00

PreviousRepayments 10 4.30 ApplicationSignedHour 10 3.90

Age 10 4.70 PreviousRepayments 10 4.80

AmountOfPreviousLoans 10 4.90 home ownership type 10 5.00

marital status id 10 6.50 AmountOfPreviousLoans 10 5.50

language code 10 6.60 language code 10 5.80

NewLoanMonthlyPayment 10 9.43 marital status id 10 8.90

AppliedAmount 10 11.80 Age 10 9.90

nr of dependants 10 12.70 occupation area 10 10.70

occupation area 10 13.00 employment status 10 11.00

employment status 9 11.89 NewPaymentToIncome 9 11.11

VerificationType 8 7.69 NewLoanMonthlyPayment 9 12.22

NewPaymentToIncome 8 11.25 ApplicationSignedWeekday 7 15.00

ApplicationType 7 14.43 AppliedAmount 6 13.83

UseOfLoan 6 11.50 ApplicationType 5 14.80

income total 5 15.40 nr of dependants 4 14.25

Employment Duration 4 17.50 LiabilitiesToIncome 2 14.50

home ownership type 3 10.00 UseOfLoan 2 15.50

FreeCash 3 15.00 education id 1 12.00

Table 3: Summary of the variables selected by the Backward selection algorithm with the

threshold p-value = 0.05 for two different categorical variables handling. The column #

presents number of independent runs in which the variable was selected as statistically

significant. The column Rank shows the average rank of each variables when sorted by

it’s p-value in each model.

5.4 SVM with Linear kernel

Unlike logistic regression, there are no standardized and generally applicable pro-

cedures to judge the statistical significance of the explanatory variables and to

select the most important ones. The techniques used all over the relevant lit-

erature are rather heuristics or ad-hoc ideas that could not be relied upon in

general.34

I have extensively experimented with the procedure described in section 3.2.2 with

the AUC as decision criterion, using the chi-square statistic test to distinguish the

real performance improvement from the differences caused by the pure chance.

34See [35] as an example.
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Unfortunately, the feature selection was very unstable. Except the most sig-

nificant features (credit score, Interest), the selected final models seemed to be

affected more by random fluctuations and no clear pattern could be identified.

This is true for SVM with linear kernel as well as with the Gaussian kernel. After

many attempts, I have discarded this approach as unreliable and abandoned the

idea.

The main challenge arises from the fact, that there are no formal statistical tests

similar to the Wald statistics used in Logistic Regression which could be used to

evaluate the contribution of the given variable to the performance of the whole

model in case of Support Vector Machines. Indeed, there are some proposals, in

the literature, but nothing that could be compared in terms of formal definition

and theoretical background.

Other quantitative approaches (like F-Score mentioned in section 3.2.3) can play

only subsidiary role in the feature selection process due to the strong assumptions

they depend on (e.g. the independence of features).

Guyon in [27] does propose some methods for the feature selection, namely the

square of the weights from the hyperplane generated by the support vector ma-

chines, (wi)
2. Although theoretically justified, this can be used only as the ordinal

criterion to rank the explanatory variables. It does not tell us, whether the specif-

ic value of the square of the weight is high enough to be considered as statistically

significant. Another difficulty arises with the categorical variables in the dum-

my approach - how should be the square of weights relevant to the categorical

variable aggregated so that it can be compared with one single number obtained

from the numerical variable?

Bellotti in [5] cunningly bypasses these problems: ”We set a threshold of 0.1 [for

weights on explanatory variable] and all features with weights greater than this

will be selected as significant features. This threshold level is chosen since we

found it yields approximately the same number of features as the LR method.”

The quotation emphasizes the greatest obstacle for the wider application of the

support vector machines for credit scoring. As Bellotti&Crook wrote in the in-

troduction of their work [5]:
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Financial institutions are primarily interested in determining which

consumers are more likely to default on loans. However, they are al-

so interested in knowing which characteristics of a consumer are most

likely to affect their likelihood to default. (...) This information allows

credit modellers to stress test their predictions.

So our approach to feature selection could be as follows:

• Choose the statistically significant features using Logistic regression and

the formal statistical tests (e.g. Wald statistics).

• Train support vector machines using these features.

Since the goal of my thesis is to compare performance between SVM and LR,

this approach may be deemed reasonable. As a consequence, SVM cannot be

regarded as a stand-alone method in such a framework.

Genetic algorithm for feature selection problem was proven to be superior to

the above mentioned approaches [36]. Genetic algorithm approach, on the other

hand, brings up the black box problem. The resulting models may be better

and more robust in terms of the discriminative power. But with its inability to

quantify the contribution of each variable, one cannot expect that such framework

could be adopted by conservative and highly regulated financial institutions, no

matter how perfect the resulting models would be, compared to traditional ones.

For this exactly reason, I did not consider genetic algorithm for feature selection

as a viable option for this purpose.

5.4.1 Optimal cost parameter search

Support vector machines bring another hitch to get over - before the actual train-

ing begins, the optimal cost parameter C needs to be found. I have used the

technique described in the section 3.1.3.

The values of log2C from the interval (−25; 10) were examined. Since the default

value recommended by the LIBSVM manual [9], log2C = −1, was among the best

performing possibilities, I have selected that value as the optimal one to proceed.
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One very important conclusion regarding the categorical variables follows from

the optimal cost parameter search. While the optimal C was clear and easy to

find in the case of ”woeised” data set, the exact opposite is true in the case of

”dummy variables” data set.

In the latter case, the performance exhibited a chaotic behaviour. No matter how

fine the division of the possible values was, even the slightest change of C led to the

great and unpredictable changes in the observed AUC on the testing sample. Such

phenomenon is rather disturbing and indicates a lower-than-expected robustness

of the linear SVM in combination with the dummy variables used to express

categorical values.

Another issue arose with values log2C ≥ 2 and was common for both the data

sets. The time needed for the SVM algorithm to find an optimal hyperplane rises

exponentially for the higher values of C (see Figure 7). The increased computa-

tional demandingness does not translate into higher performance, though. Based

on the numerous experiments carried out for the sake of this thesis, I cannot

recommend using values higher than log2C ≥ 5, as they lead to unbearably long

training times even on smaller data set comprising of just couple of hundreds of

data points.

5.5 SVM with Gaussian kernel

Radial basis function as defined in (2.38) is probably the most used non-linear

kernel in connection with the support vector machines. The Gaussian kernel maps

the data set from the original space with n dimensions to the feature space with

infinite number of dimensions. Despite this fact, it has only one parameter. Thus,

RBF unites the sensible computational costs with the robustness and flexibility

of the separating hyperplane shapes.

Together, there are 2 parameters to be found: cost parameter C and shape pa-

rameter γ. The recommended 2-D grid search technique as described in Section

3.1.3 and depicted at Figure 6 was used for this task.

Once again, the stability and robustness of the search process was by far higher

in the case of the woeised data set.

The optimal parameters log2γ = −3 and log2C = 2.5 were found to maximize

the AUC on the test sample.
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Figure 7: The time necessary to train the support vector machines with linear kernel as

a function of the cost parameter C. The time on the y-axis is in the logarithmic scale.

For values log2C > 0, the dependence becomes roughly exponential and the training

time rises quickly to the unbearable values. The training time of the logistic regression

on the very data set is shown for comparison (t = 0.347 seconds).

5.6 Model results

There are three questions I was looking the answer for:

• How is the model performance affected by the number of explanatory vari-

ables included in the model?

• Does the feature selection process bring some added value or will the per-

formance of the unrestricted model be satisfactory enough to skip this time-

consuming task with no remorse?

• How is the model performance affected by the way the categorical variables

are treated?
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Dummy variables WOEisation

Model AUC Model AUC Diff.

credit score 0.641 credit score 0.650 +0.009 *

Interest 0.717 Interest 0.722 +0.006 **

PreviousRepayments 0.727 ApplicationSignedHour 0.735 +0.008

Age 0.729 PreviousRepayments 0.744 +0.015 **

AmountOfPreviousLoans 0.735 home ownership type 0.753 +0.018 **

marital status id 0.747 AmountOfPreviousLoans 0.758 +0.011

language code 0.750 language code 0.761 +0.011

NewLoanMonthlyPayment 0.752 marital status id 0.765 +0.013 *

AppliedAmount 0.752 Age 0.767 +0.015 **

nr of dependants 0.754 occupation area 0.770 +0.016 **

occupation area 0.753 employment status 0.772 +0.019 **

employment status 0.755 NewPaymentToIncome 0.774 +0.019 **

VerificationType 0.760 NewLoanMonthlyPayment 0.775 +0.015 **

NewPaymentToIncome 0.762 ApplicationSignedWeekday 0.775 +0.014 *

ApplicationType 0.762 AppliedAmount 0.777 +0.015 **

UseOfLoan 0.760 ApplicationType 0.775 +0.015 **

income total 0.761 nr of dependants 0.776 +0.015 **

Employment Duration 0.762 LiabilitiesToIncome 0.775 +0.014 *

home ownership type 0.761 UseOfLoan 0.775 +0.014 **

FreeCash 0.761 education id 0.774 +0.014 *

Unrestricted 0.750 Unrestricted 0.768 +0.018 **

Table 4: The summary of the performance of logistic regression with respect to the

number of variables included in the model. The order of the inclusion was done ac-

cording to the Table 3, i.e. first row model contains only one variable (credit score),

second row model contains two variables (credit score and Interest) etc. The column

Diff. calculates the difference between AUC of the woeized model against AUC of the

model with dummy variables. The difference marked with * is significant at 95 % level,

marked with ** is significant at 99 % level. The statistical significance of the difference

between the models was tested by the DeLong&DeLong test. [18]

The following steps were taken to ascertain the answers to these questions and

to deduce some conclusions: With the statistically significant variables identified

in the previous section, I started with the most important one (credit score).

Gradually, one by one, other variables were added to the model according to

the Table 3. The performance of each models was evaluated using the K-fold

cross validation (K = 10) and the respective AUC and its standard deviations

were obtained. The performance was then compared with the performance of the

unrestricted model.

The results are summarized in Table 4 for the benchmark logistic regression

model, Table 5 for SVM with linear kernel and in Table 6 for SVM with gaussian

kernel.
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Dummy variables WOEisation

Model AUC Model AUC Diff.

credit score 0.627 credit score 0.664 +0.038 **

Interest 0.645 Interest 0.689 +0.044 **

PreviousRepayments 0.644 ApplicationSignedHour 0.701 +0.056 **

Age 0.683 PreviousRepayments 0.701 +0.017

AmountOfPreviousLoans 0.707 home ownership type 0.702 -0.005

marital status id 0.702 AmountOfPreviousLoans 0.729 +0.026 *

language code 0.726 language code 0.728 +0.002

NewLoanMonthlyPayment 0.726 marital status id 0.744 +0.019 *

AppliedAmount 0.730 Age 0.748 +0.018 *

nr of dependants 0.729 occupation area 0.750 +0.021 **

occupation area 0.717 employment status 0.755 +0.039 **

employment status 0.725 NewPaymentToIncome 0.754 +0.029 **

VerificationType 0.730 NewLoanMonthlyPayment 0.758 +0.028 **

NewPaymentToIncome 0.735 ApplicationSignedWeekday 0.758 +0.023 **

ApplicationType 0.734 AppliedAmount 0.758 +0.025 **

UseOfLoan 0.735 ApplicationType 0.760 +0.025 **

income total 0.735 nr of dependants 0.761 +0.026 **

Employment Duration 0.735 LiabilitiesToIncome 0.761 +0.027 **

home ownership type 0.736 UseOfLoan 0.762 +0.026 **

FreeCash 0.736 education id 0.762 +0.027 **

Unrestricted 0.722 Unrestricted 0.756 +0.034 **

Table 5: Performance of the support vector machines model with the linear kernel with

the cost parameter C = 2−1. The arranging and meaning of the columns are exactly

same as in Table 4.

The benchmark logistic regression model shows a mild benefit from the woeisation

of the categorical variables. It is also clear, that the feature selection may be

beneficial for LR, as the performance of the unrestricted model as well as the

performance of the model with many explanatory variables underperform the

models with fewer variables in both cases.

As already mentioned earlier, I had a big trouble trying to make the linear SVM

work, especially on the dummy data set. The performance of the model exhibits

a chaotic behaviour, it is extremely sensitive to the value of C parameter. This

behaviour made me study the problem further, using the artificially created data

sets in the controlled environment. From that it seems to me that the support

vector machines with linear kernel might be negatively affected with the unbal-

anced classes, i.e. the erratic/chaotic behaviour appears, when one class has

more prominent representation than the other one. This issue was also discussed

in Chapter 4.
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Dummy variables WOEisation

Model AUC Model AUC Diff.

credit score 0.584 credit score 0.568 -0.016

Interest 0.658 Interest 0.615 -0.044

PreviousRepayments 0.662 ApplicationSignedHour 0.617 -0.044

Age 0.659 PreviousRepayments 0.669 +0.010

AmountOfPreviousLoans 0.677 home ownership type 0.681 +0.004

marital status id 0.697 AmountOfPreviousLoans 0.703 +0.006

language code 0.710 language code 0.718 +0.008

NewLoanMonthlyPayment 0.706 marital status id 0.717 +0.012

AppliedAmount 0.725 Age 0.726 +0.001

nr of dependants 0.730 occupation area 0.755 +0.025

occupation area 0.782 employment status 0.743 -0.039 *

employment status 0.791 NewPaymentToIncome 0.736 -0.056 **

VerificationType 0.803 NewLoanMonthlyPayment 0.739 -0.064 **

NewPaymentToIncome 0.800 ApplicationSignedWeekday 0.729 -0.071 **

ApplicationType 0.804 AppliedAmount 0.729 -0.075 **

UseOfLoan 0.791 ApplicationType 0.732 -0.060 **

income total 0.792 nr of dependants 0.751 -0.041 *

Employment Duration 0.794 LiabilitiesToIncome 0.755 -0.039 *

home ownership type 0.795 UseOfLoan 0.775 -0.021

FreeCash 0.796 education id 0.769 -0.028

Unrestricted 0.831 Unrestricted 0.806 -0.025 *

Table 6: Performance of the support vector machines model with the Gaussian kernel

with parameters C = 22.5, γ = 2−3. The arranging and meaning of the columns are

exactly same as in Table 4.

Despite the fact, that linear SVM and logistic regression are in principle alike

and should lead to similar hyperplanes, the logistic regression has almost always

beaten the linear support vector machines in terms of AUC performance. My re-

sults contradict the theoretical conclusion coming from the Vapnik–Chervonenkis

theory, that the support vector machine gives the best linear classifier. While the

theory itself is mathematically proven, it seems that the algorithm does not cope

well with the negative frictions and data imbalance in the inputs when applied

to the real data sets.

My findings are in agreement with the comparative papers of Baesens et al., [42]

and [4], which conclude that, on average, the support vector machines with linear

kernel perform slightly worse than logistic regression when applied to the real

data sets - although they may perform slightly better in some specific cases.
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My experiments with the artificial data also support this conclusion: the max-

imum likelihood algorithm used for the estimation of the logistic regression pa-

rameters gives systematically better results than SVM with linear kernel, in cases

when the data show high level of random noise and the classes are imbalanced.

The separating hyperplanes provided by the LR was in most cases closer to the

ideal solution than the hyperplane generated by the linear support vector ma-

chines. The difference descends when the data are well separated (i.e. lower level

of random noise) and the classes are equally represented; the superiority of the

LR results remains, though.

The linear support vector machines seem to be less affected by the number of

explanatory variables included in the model, although the difference is not high to

distinguish whether the observed phenomenon is real or caused just by a chance.

There is a slight benefit in woeisation of the categorical variables, especially in

cases where just a few variables are presented in the model. I have a reason to

believe that this is not an artefact; when other categorical variables were used as

the only explanatory variable, the woeised version was always doing better than

the dummy version.

The true power of support vector machines appears in cases, when the input data

exhibit some non-linear behaviour. This is probably the only instance, when SVM

can beat the logistic regression as it can produce the separating hyperplane of

the shapes that logistic regression simply cannot.

According to my results, this appears to be the case of the Bondora credit scoring

data set. The performance of the SVM with RBF was evidently higher than the

performance of the benchmark model, with a slightly preference of the dummy

variables to the woeised ones.

Again, the AUC increases with the number of explanatory variables and the

unrestricted model shows the highest performance among other models. Should

it be a general issue, the feature selection process would actually do more harm

than good, but I did not perform enough experiments with other data sets to

make such a strong conclusion.
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My results in the case of non-linear kernel kind of contradict the prevailing con-

clusions in the literature, namely [5], [42]. Gaussian kernel is seldom reported

as being significantly better than the linear kernel and/or the logistic regression,

pointing to the logical conclusion that the credit data are usually linear or just

mildly non-linear. However, according to Table 6, the superiority of the RBF

to the linear classifiers persists without regard to the variables included to the

model, the data subset or the time subset of the original inputs and seem to be a

real issue in this specific case. Also, my finding is in agreement with the results

in [56] where the author used SVM (with linear and non-linear kernel) and LR

to evaluate a credit data set from other peer-to-peer lending platform, Lending

Club.

LR SVM-L SVM-R

Dummy Woe Dummy Woe Dummy Woe

LR
Dummy +0.015

6.1844

(.0129)

-0.027

1.9807

(.1593)

-0.002

1.1057

(.2930)

+0.069

16.9649

(.0000)

+0.044

5.4346

(.0197)

Woe -0.042

12.109

(.0005)

-0.017

3.4913

(.0617)

+0.054

6.2367

(.0125)

+0.029

0.8783

(.3487)

SVM-L
Dummy +0.025

4.8055

(.0284)

+0.096

22.1021

(.0000)

+0.071

8.2049

(.0042)

Woe +0.071

9.2264

(.0024)

+0.046

2.5450

(.1106)

SVM-R
Dummy -0.025

4.3432

(.0372)

Woe

Table 7: The statistical tests of the differences in performance among the 6 models

considered in this thesis. Each cell contains 3 rows: the difference between AUC of the

model specified in the heading minus AUC of the model specified on the left-hand side

of the table, the respective χ2 statistics and the p-value. Statistical test from [18] was

used.

The differences among the models is summarized in Table 7, for each of the

6 model classes, the best performing model with lowest possible variables was

selected (15 variables for Logistic regression, 16 variables for linear SVM and

unrestricted models for SVM with Gaussian kernel). Two main conclusions can

be done according to this table:
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Figure 8: The comparison of the ROC curves for all the three model classes.

1. The way how the categorical variables are treated does have influence on

the models’ performance, in all cases the difference is statistically significant

at 95 % level. The direction of this influence, however, is not stable. One

cannot say that woeization brings a performance boost against the dummy

variables encoding (or vice versa).

2. The SVM-R model with Dummy variables outperforms all the other models

at 95 % significance level; apart from woeized LR model it outperforms all

of them at 99 % significance level, too.
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5.7 Quantifying the edge

The mission of this section is to quantify the benefits of using advanced statistical

models in investing into the P2P loans. Can the excess performance brought by

the now-developed models justify the troubles underwent and time spent building

them? Or would be an average investor better off blindly diversifying or counting

on the common sense when investing? The backtesting approach was chosen to

answer these questions.

Let us focus on three different types of investors:

• RANDOM - Randomly chooses his investments, relying on nothing than

diversification effect of a large portfolio of loans and the initial screening

process done by the operator of the platform itself.

• NAIVE - The investments are chosen by looking at a couple of simple

attributes of the debtor, based on common sense rather than strict mathe-

matical model. This investor will go only for loans, that have: Credit Group

A, Credit Score 900-1000, Debt-to-income ratio ≤ 59% and are willing to

pay 22 percent interest, or higher. This investor mimics my own behaviour

in the beginning of the platform, when no historical data were available.

• FORMAL - Investments will be chosen based on the best mathematical

model available. In this case it will be the Support vector machines with

Gaussian kernel, unrestricted, with the categoricals encoded using the dum-

my variables. The model is trained for each run using a subset of the data.

Then it can invest only in the loans set aside as a test sample. Logistic

regression model as a benchmark is used, too.

The backtest was performed using the Monte Carlo simulation approach with

10 000 iterations. The initial investment of 1 000 EUR was allocated in different

loans, 10 EUR each. The ROI observed after 1 year of investing and the risk

profile of the portfolio (measured as Value at Risk, VaR) were used to evaluate

successfulness of the aforementioned strategies. For the sake of the feasibility of

this experiment, some simplifying assumptions were made:

• All investments are available for bidding at the beginning and the initial

amount can be spread among loans immediately. This was not true when

the platform started, but it is a reasonable assumption for the recent months

and years.
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• The data set is homogeneous enough with respect to the time (i.e. the

cohort of loans provided in 2009 has same properties and behaviour as the

cohort from 2013). Although this may sound as a strong assumption, my

informal analysis does not indicate the presence of sudden changes in the

data set and even the default probability was stable throughout the years.

• The investor is in the position of the pure market taker - his investments do

not influence the final interest rate of the loan resulting from the auction

and have no effect on whether the loan will be provided or fails due to the

lack of total money gathered from the investors. Given the low amount per

one loan, this assumption is reasonable.

• The defaulted loan is sold on the secondary market right before the default

occurs, with the 40 % discount from the current principal. Given the gen-

eral recovery ratio and my experience, this assumption is also reasonable.

The money is then reinvested into another loan according to the respective

investment strategy.

• The revenues are reinvested at the end of each month to other loans that

satisfy the strategy rules.

• After a year, all cash flows are summed up, the current loans are valued at

the remaining principal and the return on investment based on the internal

rate of return is calculated.

Table 8 shows the results of the backtesting. The amount of loans in portfolio

(100 at the beginning, and rising as the revenues are further reinvested) seems to

provide a sufficient diversification against a potential loss. The Random strategy

is the only one that shows negative VaR(1yr, 1%).

There is a clear pattern in the table: with more sophisticated strategy, there is

a higher expected return (profit) and lower risk undertaken. While the Naive

strategy outperforms the Random strategy in terms of yield and risk, the formal-

ized approach using either LR model or SVM model tends to bring additional

risk-adjusted returns.
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Despite the fact that process of development of such model is laborious35 The

differences between the strategies are, however, rather small as an absolute value.

Therefore, the extra effort could be profitable only to those, who are investing or

plan to invest higher amounts of money in absolute terms.

One has to bear in mind, that the Table 8 provides a result of simulations based

on simplified assumptions. These numbers can not in any case be used as an

extrapolation of future. Personally, I expect that the average return will be

decreasing for the next couple of years, as the “market” inside the platform will

become more efficient and the operator of the platform will push for higher profits

for them, thus wiping off the “early adopters premium”36 which could have been

realized at Bondora in the past. Such trends could have been observed at older

p2p platforms (like Lending Club) in the previous years, too.

P/L after 1 year (EUR)

Strategy Mean St.dev. V aR0.05 V aR0.01 ROI

Random 45.63 24.56 5.05 -12.61 4.74 %

Naive 105.50 19.13 73.98 60.49 10.97 %

LR 146.77 15.04 121.60 111.29 15.25 %

SVM-R 172.41 13.97 149.17 139.60 17.91 %

Table 8: The profit and ROI on 1 year horizon with the initial investment 1 000 EUR

spread into 10 EUR loans with different strategies as per the Monte-Carlo simulation

with 10 000 independent runs. The standard deviation and the 1-year 5% and 1% Value

at Risk as the measures of risk are calculated.

35We are talking about months rather than weeks under amateur investors’ conditions without

previous experience in this field.

36as I use to call it
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Figure 9: The distribution of the P/L in EUR after 1 year, according to the 10 000

backtesting simulations.
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Conclusion

With the advance of new technologies and investment possibilities, the statisti-

cal or machine learning methods, once reserved exclusively to the professional

financial institutions, can be also beneficial to the amateur investors.

The method of support vector machines as an alternative to the conservative

logistic regression models was studied and its performance compared on the real

credit data sets. Especially in combination with the non-linear kernel, SVM

proved itself as a competitive approach and provided a slight edge on top of the

logistic regression model.

The cost for this is much higher computational time, which was needed for the

finding of the optimal parameters of the kernel function in particular. The process

of model development was time consuming, as well. Partly because of the necessi-

ty to study the subject thoroughly, since SVM is not as notorious method as LR.

Partly because of lower support of support vector machines in the environment I

chose for my models’ development.

The extra performance brought by the support vector machines can not be con-

sidered as an argument for replacing the well established logistic regression. The

professional institutions are bound by the strict regulatory rules and the extra

performance is not high enough to outweigh the potential model risk: there is

simply not enough incentive for regulators and traditional institutions to replace

a model that worked so well for decades.

Since the amateur investors and private funds are not bound by the regulatory

rules, my results could indicate that SVM may be an interesting alternative for

them. Nevertheless, as the background research from the cited scientific papers

shows, support vector machines’ performance tend to be less stable and reliable

in general. While it performs well on some data sets (as in my case), it gets

beaten by the logistic regression on average. [42]
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There are other arguments against the real-life application of the support vector

machines in credit scoring. The massively cited comparison paper of Baesens et

al. from 2013 clearly shows that individual classifiers (where LR along with SVM

belong to) have reached their performance limits years ago and are no longer

at the center of attention of the researchers. Baesens’ team goes even further,

when they recommend to stop using logistic regression as an etalon in the future

scientific research and replace it by the new generation of algorithms (namely

Random Forests).

One can therefore argue, that private subjects will tend to adopt the current

state-of-the art classifications algorithms. Some of them were briefly discussed in

the Chapter 4 as the potentially interesting topics for further research.

Other, more serious argument against SVM, comes out from the fact that it is

very hard to use it as a standalone method. Despite a serious effort, I was not

able to implement a reliable feature selection process according to the techniques

recommended in the literature (which were summarized in Section 3.2). Even-

tually, I had to divert to the alternative approach, using the rigorous statistical

tests in connection with the logistic regression, to select the most statistically

significant explanatory variables to build the model. More importantly, this is

the only method explicitly mentioned in the literature available to me, to quantify

the effect of each variable in support vector machines model. This disadvantage

is slightly balanced by the fact, that SVM tend to perform better in the form of

the unrestricted model.

Despite all the facts against it, support vector machines remain an important

concept from the educational and theoretical point of view. They also formed a

history of machine learning, as it was the first method which was able to compete

with human in the recognition of the handwritten numbers and they inspired

many subsequent research. Their use in credit scoring specifically is not, however,

without problems and cannot be recommended in real applications, unless another

major breakthrough further increases its performance or reliability.
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A. Appendix

Logistic regression: dummy variables

Variable DF Wald χ2 p Gini

Credit score 6 108.8197 0.0000 0.3205

Interest 1 57.1851 0.0000 0.4137

PreviousRepayments 1 24.3019 0.0000 0.1604

Age 1 23.3031 0.0000 0.1534

AmountOfPreviousLoans 1 22.3896 0.0000 0.0207

Marital status 4 27.6078 0.0000 0.0941

VerificationType 2 20.4638 0.0000 0.2248

NewLoanMonthlyPayment 1 15.5639 0.0001 0.2772

NewPaymentToIncome 1 11.4037 0.0007 0.2615

nr of dependants 1 8.7477 0.0031 0.0058

UseOfLoan 8 21.1369 0.0068 0.0658

Occupation 19 36.4364 0.0093 0.1249

Employment 5 14.5231 0.0126 0.1214

AppliedAmount 1 5.7889 0.0161 0.1952

ApplicationType 1 4.2583 0.0391 0.0773

Table 9: The final logistic regression model built from 15 explanatory variables. Cate-

gorical variables were encoded using the dummy variables. The Wald χ2 statistics and

the p-value of the total effect of the variable are summarized in 3rd and 4th columns.

The last column contains the Gini coefficient for each variable from the univariate

analysis.
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Variable DF Estimate SE Wald χ2 p

Intercept 1 -0.6409 0.7997 0.6423 0.4229

Interest 1 0.4643 0.0614 57.1851 0.0000

PreviousRepayments 1 -0.9138 0.1854 24.3019 0.0000

Age 1 -0.3274 0.0678 23.3031 0.0000

AmountOfPreviousLoans 1 0.6262 0.1323 22.3896 0.0000

NewLoanMonthlyPayment 1 -0.4786 0.1213 15.5639 0.0001

AppliedAmount 1 0.2147 0.0893 5.7889 0.0161

nr of dependants 1 -0.1837 0.0621 8.7477 0.0031

NewPaymentToIncome 1 0.3794 0.1123 11.4037 0.0007

Credit score = 1000 1 -0.4408 0.2070 4.5362 0.0332

Credit score = 800 1 -0.1349 0.2813 0.2299 0.6316

Credit score = 700 1 0.6146 0.2740 5.0317 0.0249

Credit score = 600 1 -0.0502 0.2588 0.0376 0.8462

Credit score = 500 1 0.9316 0.2273 16.7974 0.0000

Credit score = empty 1 0.1902 0.7848 0.0588 0.8085

Marital status = Married 1 -1.4145 0.3538 15.9883 0.0001

Marital status = Cohabitant 1 -1.8084 0.3672 24.2555 0.0000

Marital status = Single 1 -1.5172 0.3744 16.4220 0.0001

Marital status = Divorced 1 -1.4623 0.3785 14.9280 0.0001

Occupation = empty 1 -1.0717 0.4980 4.6318 0.0314

Occupation = Other 1 0.0767 0.2483 0.0954 0.7574

Occupation = Telecom 1 -0.1106 0.2926 0.1430 0.7053

Occupation = Finance 1 0.3766 0.3166 1.4142 0.2344

Occupation = Real-estate 1 0.6374 0.6939 0.8437 0.3583

Occupation = Research 1 -0.7243 0.6831 1.1243 0.2890

Occupation = Administrative 1 0.3894 0.5114 0.5798 0.4464

Occupation = Civil service & military 1 0.7060 0.2994 5.5589 0.0184

Occupation = Education 1 -0.2217 0.3096 0.5127 0.4740

Occupation = Healthcare 1 0.5409 0.3292 2.6990 0.1004

Occupation = Art/entertainment 1 0.3496 0.4096 0.7285 0.3934

Occupation = Agriculture 1 0.5361 0.3406 2.4771 0.1155

Occupation = Mining 1 2.3646 1.2185 3.7660 0.0523

Occupation = Processing 1 0.0232 0.2770 0.0070 0.9331

Occupation = Energy 1 -0.3527 0.4661 0.5726 0.4492

Occupation = Utilities 1 -0.3805 0.8587 0.1964 0.6577

Occupation = Construction 1 0.1950 0.2997 0.4234 0.5153

Occupation = Retail/wholesale 1 -0.0209 0.2822 0.0055 0.9410

Occupation = Transport 1 0.1994 0.3157 0.3990 0.5276

VerificationType = Phone 1 1.0354 0.2337 19.6264 0.0000

VerificationType = Income verified 1 0.8578 0.2434 12.4161 0.0004

ApplicationType = Timed funding 1 0.2747 0.1331 4.2583 0.0391

UseOfLoan = Loan consolidation 1 0.3533 0.2468 2.0488 0.1523

UseOfLoan = Real estate 1 0.0374 0.3792 0.0097 0.9215

UseOfLoan = Home improvement 1 0.6109 0.2430 6.3216 0.0119

UseOfLoan = Business 1 0.5974 0.3791 2.4837 0.1150

UseOfLoan = Education 1 0.9645 0.3086 9.7692 0.0018
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Variable DF Estimate SE Wald χ2 p

UseOfLoan = Travel 1 0.1772 0.3745 0.2240 0.6360

UseOfLoan = Vehicle 1 0.6574 0.2500 6.9123 0.0086

UseOfLoan = Other 1 0.2459 0.2291 1.1520 0.2831

Employment = empty 1 -0.4164 0.6641 0.3932 0.5306

Employment = Partially employed 1 -0.4944 0.6663 0.5506 0.4581

Employment = Fully employed 1 -0.5997 0.6310 0.9034 0.3419

Employment = Self-employed 1 -0.8576 0.7325 1.3708 0.2417

Employment = Entrepreneur 1 -1.7734 0.7127 6.1908 0.0128

Table 10: Maximum likelihood estimates for the model from Table 9. Missing values

of the categorical variables are: Credit score=900, Marital status=Widowed, Occupa-

tion=Hospitality and catering, Verification type=Income and expenses verified, Appli-

cation type=Quick funding, UseOfLoan=Health, Employment=Retiree - the estimates

for these values can be derived from the estimates stated in the table.

Logistic regression: woeised categorical variables

Variable DF Wald χ2 p Gini

Credit score 1 100.9309 0.0000 0.3431

Interest 1 49.7779 0.0000 0.4137

Home ownership 1 31.2436 0.0000 0.2412

ApplicationSignedHour 1 27.1686 0.0000 0.0830

PreviousRepayments 1 23.4446 0.0000 0.1604

Language code 1 22.5242 0.0000 0.0942

AmountOfPreviousLoans 1 21.7680 0.0000 0.0207

Marital status 1 16.6359 0.0000 0.0941

Age 1 12.2566 0.0005 0.1534

Employment status 1 10.8514 0.0010 0.1214

Occupation 1 10.3915 0.0013 0.2022

NewLoanMonthlyPayment 1 8.0873 0.0045 0.2772

NewPaymentToIncome 1 7.1446 0.0075 0.2615

AppliedAmount 1 4.2468 0.0393 0.1952

ApplicationSignedWeekday 1 4.0817 0.0434 0.0732

Table 11: The final logistic regression model built from 15 explanatory variables. Cat-

egorical variables were transformed to the real-valued variables using the Weight of

Evidence calculation.
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Variable DF Estimate SE

Intercept 1 -1.6810 0.0628

Interest 1 0.3915 0.0555

PreviousRepayments 1 -0.8528 0.1761

AmountOfPreviousLoans 1 0.5789 0.1241

Age 1 -0.1808 0.0516

NewPaymentToIncome 1 0.2598 0.0972

NewLoanMonthlyPayment 1 -0.3149 0.1107

AppliedAmount 1 0.1689 0.0820

Credit score 1 -0.4709 0.0469

ApplicationSignedHour 1 -0.5922 0.1136

Home ownership 1 -0.5077 0.0908

Language code 1 -0.7404 0.1560

Marital status 1 -0.2080 0.0510

Occupation 1 -0.1656 0.0514

Employment 1 -0.1916 0.0582

ApplicationSignedWeekday 1 -0.1017 0.0504

Table 12: Maximum likeliehood estimates of the model from Table 11.

IV


	Contents
	List of Tables
	List of Figures
	Abreviations
	Notation
	Introduction
	Linear classifiers
	Geometric interpretation of the data points
	Classification formalized
	Logistic regression

	Support vector machines
	Maximum margin hyperplane
	Lagrangian methods for optimization
	Primal problem
	Dual problem
	Application to maximum margin hyperplane

	Kernels and kernel trick
	Linear kernel
	Polynomial kernel
	Gaussian kernel (Radial basis function)
	Other kernels

	Soft margin classifiers
	Algorithm implementation

	Model building
	Data preprocessing
	Categorical variables
	Scaling and standardizing
	Grid search
	Missing values

	Feature selection
	Forward selection
	Backward selection
	F-score
	Genetic algorithm

	Model selection
	Hold-out cross validation
	k-fold cross validation
	Leave-one-out cross validation

	Model evaluation

	Support vector machines in Credit risk
	Application
	Peer to Peer Lending
	Data description
	Benchmark model: Logistic regression
	SVM with Linear kernel
	Optimal cost parameter search

	SVM with Gaussian kernel
	Model results
	Quantifying the edge

	Conclusion
	Bibliography
	Appendix

